Exponential time algorithms for the minimum
dominating set problem on some graph classes

SERGE GASPERS

University of Bergen, Norway

and

DIETER KRATSCH

Université Paul Verlaine - Metz, France

and

MATHIEU LIEDLOFF and IOAN TODINCA
Université d'Orléans, France

The Minimum Dominating Set problem remains NP-hard when restricted to any of the fol-
lowing graph classes: c-dense graphs, chordal graphs, 4-chordal graphs, weakly chordal graphs
and circle graphs. Developing and using a general approach, for each of these graph classes we
present an exponential time algorithm solving the Minimum Dominating Set problem faster than
the best known algorithm for general graphs. Our algorithms have the following running time:
0(1.4124™) for chordal graphs, O(1.4776™) for weakly chordal graphs, O(1.4845™) for 4-chordal
graphs, O(1.4887™) for circle graphs, and O(1.2273(1Jrv 1’26)") for c-dense graphs.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]:

Nonnumerical algorithms and problems

General Terms: Algorithms
Additional Key Words and Phrases: Moderately exponential-time algorithms, dominating set
problem, graph classes

1. INTRODUCTION

During the last years there has been a growing interest in the design of exact expo-
nential time algorithms. Various surveys on exact exponential time algorithms have
been published recently [Fomin et al. 2005b; Iwama 2004; Schoning 2005; Woeg-
inger 2003; 2004]. In Woeginger’s seminal survey [2003], fundamental techniques
to design and analyze exact exponential time algorithms are presented. Among
others, Fomin et al. present treewidth based algorithms [2005b].

Author’s address: S. Gaspers, Department of Informatics, University of Bergen, N-5020 Bergen,
Norway, serge.gaspers@ii.uib.no.

D. Kratsch, Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine - Metz,
57045 Metz Cedex 01, France, kratsch@univ-metz.fr.

M. Liedloff and I. Todinca, Laboratoire d’Informatique Fondamentale d’Orléans, Université
d’Orléans, 45067 Orléans Cedex 2, France (Mathieu.Liedloff|Ioan.Todinca)@univ-orleans.fr.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY /0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-21.

2 . Serge Gaspers et al.

Exponential time algorithms for special graph classes have been studied in par-
ticular for graphs of maximum degree three and for planar graphs (see e.g. [Fomin
et al. 2005Db]).

Known results. A set D C V of a graph G = (V, E) is dominating if every
vertex of V' \ D has at least one neighbor in D. Given a graph G = (V, E), the
Minimum Dominating Set problem (MDS) asks to compute a dominating set of
minimum cardinality.

Exact exponential time algorithms for the Minimum Dominating Set problem
have not been studied until recently. By now there is a large interest in this partic-
ular problem. In 2004 three papers with exact algorithms for MDS have been pub-
lished. In [2004] Fomin et al. presented an O(1.9379™) time algorithm for general
graphs and algorithms for split graphs, bipartite graphs and graphs of maximum
degree three with running time O(1.4143™), O(1.7321™), O(1.5144™), respectively.
Exact algorithms for MDS on general graphs have also been given by Randerath and
Schiermeyer [2004] and by Grandoni [2006]. Their running times are O(1.8899™)
and O(1.8026™), respectively.

These algorithms have been significantly improved by Fomin et al. in [2005a]
where the authors obtain exact algorithms for MDS on general graphs. Their simple
Branch & Reduce algorithm is analyzed using the so-called Measure & Conquer
approach, and the upper bounds on the worst case running times are established
by the use of non standard measures. Their algorithm has running time O(1.5263™)
and needs polynomial space. Using memorization one can speed up the running
time to O(1.5137") needing exponential space then. Both variants are based on
algorithms for the Minimum Set Cover problem where the input consists of a uni-
verse U and a collection S of subsets of U, and the problem requires to find a
minimum number of subsets in S such that their union is equal to Y. These algo-
rithms need running time 0(1.2354|M|+‘5|) and polynomial space, or running time
0(1.230341+151) and exponential space [Fomin et al. 2005a].

Recently these algorithms have been improved by van Rooij and Bodlaender.
Thus the currently fastest exact algorithm to compute a minimum set cover has
running time O(1.2273//+151) and it needs exponential space [van Rooij and Bod-
laender 2008]. All running times proved in this paper directly build on this new
algorithm.

Fomin and Hgie [2006] used a treewidth based approach to establish an algorithm
to compute a minimum dominating set for graphs of maximum degree three within
running time O(1.2010™). The best known algorithm for MDS on planar graphs has
running time O(2399V™) [Dorn 2006].

It is known that the problem MDS is NP-hard when restricted to circle graphs
[Keil 1993] and chordal graphs [Booth and Johnson 1982], and thus also for weakly
chordal and 4-chordal graphs. The NP-hardness of MDS for c-dense graphs is shown
in Section 4.

Our results. In this paper we study the Minimum Dominating Set problem for
various graph classes and we obtain algorithms with a running time O(a™) better
than the best known algorithm solving MDS on general graphs. Here the value of «
depends on the graph class. More precisely o < 1.5 for all classes except for c-dense
graphs. (If ¢ > 0.0202 then a < 1.5 for ¢-dense graphs.)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 3

Table I. Running time of our algorithms

graph class running time

c-dense graphs 0(1.22737(1+V1-2¢)) (Section 4)
chordal graphs 0(1.4124™) (Section 5)
circle graphs O(1.4887™) (Section 6)
4-chordal graphs 0(1.4845™) (Section 7)
weakly chordal graphs 0(1.4776™) (Section 8)

In Section 4 we give an 0(1.2273"(”@)) time algorithm for c-dense graphs,
i.e. for all graphs with at least cn? edges, where c is a constant between 0 and 1/2.
In Section 5 we present an exact algorithm solving the MDS problem on chordal
graphs in time O(1.4124™). In Section 6 an O(1.4887™) time algorithm to solve
MDS on circle graphs is presented. In Section 7 an O(1.4845™) time solving the MDS
problem on 4-chordal graphs is given. In Section 8 an O(1.4776™) time solving the
MDS problem on weakly chordal graphs is given.

We are using two general frameworks. “Many vertices of high degree” relies
heavily on the minimum set cover algorithm of van Rooij and Bodlaender [2008]. It
is applied to c-dense graphs. Our treewidth based approach uses in fact the “many
vertices of high degree” approach for graphs of large treewidth, and otherwise it
applies the MDS algorithm using a tree decomposition. This approach is applied to
chordal, circle, 4-chordal and weakly chordal graphs.

The algorithms for circle, 4-chordal and weakly chordal graphs rely on a linear
upper bound of the treewidth in terms of the maximum degree. Such bounds are
interesting in their own. A related result for graphs of small chordality is provided
in [Bodlaender and Thilikos 1997]. We are not aware of any previous result of this
kind for any of the three classes.

2. PRELIMINARIES

Let G = (V, E) be an undirected and simple graph. For a vertex v € V' we denote
by N(v) the neighborhood of v and by N[v] = N(v)U{v} the closed neighborhood
of v. For a given subset of vertices S C V', N(S) (resp. N[S] = N(S)U S) denotes
the neighborhood (resp. close neighborhood) of S and G[S] denotes the subgraph
of G induced by S. The maximum degree of a graph G is denoted by A(G) or by
A if there is no ambiguity.

A clique is a set C' C V of pairwise adjacent vertices. The maximum cardinality
of a clique in a graph G is denoted by w(G). A dominating set D of a graph
G = (V, E) is a subset of vertices such that every vertex of V' — D has at least one
neighbor in D. The minimum cardinality of a dominating set of G is the domination
number of G, and it is denoted by v(G).

Major tools used in this paper are tree decompositions and treewidth of graphs.
Both notions have been introduced by Robertson and Seymour in [1986]. We recall
some useful definitions.

Definition 2.1 (Tree decomposition). Let G = (V, E) be a graph. A tree decom-
position of G is a pair ({X; : i € I},T) where each X;, i € I, is a subset of V' and
T is a tree with elements of I as nodes such that we have the following properties :
(1) UierXi =V;

(2) Y{u,v} € E, Ji € I such that {u,v} C X;;

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 . Serge Gaspers et al.

(3) Vi,j,k € I,if j is on the path from ¢ to k in T then X; N X, C X;.
The width of a tree decomposition is equal to max;ey | X;| — 1.

Definition 2.2 (Treewidth). The treewidth of a graph G is the minimum width
over all its tree decompositions and it is denoted by tw(G). A tree decomposition
is called optimal if its width is tw(G).

Definition 2.3 (Nice tree decomposition). A nice tree decomposition ({X; : i €
I},T) is a tree decomposition satisfying the following properties:

(1) every node of T has at most two children;

(2) If a node ¢ has two children j and k, then X; = X; = X}, (¢ is called a Join
Node);

(3) If a node 4 has one child j, then either
(a) |Xi| =|X;|+1and X; C X; (i is called an Insert Node);
(b) |Xi| =|X;| —1and X; C X; (i is called a Forget Node).

LEMMA 2.4 [KLOKS 1994]. For a constant k, given a tree decomposition of a
graph G of width k and N nodes, one can find a nice tree decomposition of G of
width k with at most 4N nodes in O(n) time, where n is the number of vertices of
the graph G.

Nice tree decompositions of small width are exploited in an algorithm of Alber
et al. which is crucial for our work.

THEOREM 2.5 [ALBER ET AL. 2002]. There is an 4‘n®™) time algorithm taking
as input a graph G = (V, E) and a tree decomposition T of G of width at most ¢,
which computes a minimum dominating set of G.

Their algorithm is sketched in the proof of Lemma 5.1 where our algorithm to
compute a minimum dominating set in chordal graphs in time 3‘n°M is given.

Structural and algorithmic properties of graph classes will be mentioned in the
corresponding sections. For definitions and properties of graph classes not given in
this paper we refer to [Brandstadt et al. 1999; Golumbic 1980].

3. GENERAL FRAMEWORK

Our algorithms solve the NP-hard Minimum Dominating Set problem by exploiting
two particular properties of the input graph G:

—G has many vertices of high degree:
{veV: dv) >t—2} >t for some (large) positive integer ¢

(see Theorem 3.1);

—there is a constant ¢ > 0 such that tw(H) < ¢- A(H) for all induced subgraphs H
of G, and there is an algorithm to compute a tree decomposition of H of width
at most ¢+ A(H) in polynomial time?

(see Theorem 3.3).

(H)n0() suffices.

n fact running time 4¢2(H)p,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 5

We describe methods using and combining those properties to establish exponential
time algorithms solving MDS for a variety of graph classes for which the problem re-
mains NP-hard. The designed algorithms are faster than the best known algorithm
for general graphs.

3.1 Many vertices of high degree

The following theorem shows that graphs with sufficiently many vertices of high
degree allow to speed up any O(a?") time algorithm solving MDS for general graphs
which is based on an algorithm for Minimum Set Cover of running time O(a/“+151),
This is the case for the currently best known algorithm solving MDS which is based on
an 0(1.2273/U41+151y algorithm for Minimum Set Cover [van Rooij and Bodlaender
2008], i.e. o = 1.2273.

THEOREM 3.1. Suppose there is a O(a|u|+‘5|) algorithm computing a minimum
set cover of any input (U, S). Let t(n) : N — RT. Then there is a O(a*"~* ™) time
algorithm to solve the MDS problem for all input graphs G fulfilling |{v € V : d(v) >
t(n) — 2} > t(n), where n is the number of vertices of G.

PROOF. Let G = (V, E) be a graph fulfilling the conditions of the theorem and
let t =t(n) > 0. Let T = {v €V : d(v) >t—2}; thus |T| > t. Notice that for
each minimum dominating set D of G either at least one vertex of T' belongs to D,
orTND=4.

This allows to find a minimum dominating set of G by the following branching
in two types of subproblems: “v € D” for each v € T, and “T'N' D = ()”. Thus
we branch into |T| + 1 subproblems and for each subproblem we shall apply the
O(a™1*181) time minimum set cover algorithm to solve the subproblems. Recall
the transformation given in [Fomin et al. 2005a]: the minimum set cover instance
corresponding to the instance G for the MDS problem has universe Y4 = V and
S ={N[u]: u eV}, and thus [U|+|S| = 2n. Consequently the running time for a
subproblem will be O(a?"~%), where x is the number of vertices plus the number of
subsets eliminated from the original minimum set cover problem for the graph G.

Now let us consider the two types of subproblems. For each vertex v € T, we
choose v in the minimum dominating set and we execute the O(aI*I5!) time
Minimum Set Cover algorithm on an instance of size at most 2n — (d(v) +1) — 1 <
2n —t. Indeed, we remove from the universe I the elements of N[v] and we remove
from S the set corresponding to v. When branching into the case “discard T” we
have an instance of set cover of size at most 2n — |T'| = 2n — ¢ since for every v € T
we remove from S the set corresponding to each v. [

COROLLARY 3.2. Let t(n) : N — R*. Then there is a O(1.2273**~4") time
algorithm to solve the MDS problem for all input graphs G fulfilling |{v € V : d(v) >
t(n) — 2} > t(n), where n is the number of vertices of G.

3.2 Treewidth based approach

For a survey on treewidth based exponential time algorithms we refer to [Fomin
et al. 2005D].

The following theorem shows how to solve the MDS problem on a class of graphs
fulfilling the condition tw(G) < cA(G) for all graphs of the class, where c is a fixed

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 . Serge Gaspers et al.

constant. The idea is that such graphs either have many vertices of high degree or
their maximum degree is small and thus their treewidth is small. In the first case
the algorithm of the previous subsection is used. In the second case the 4% (&)pO(1)
time algorithm to solve the MDS problem of Alber et al. [2002] (Theorem 2.5) is
used. To balance the running time of the two parts, a parameter A is appropriately
chosen.

lAlgorithm DS-HighDeg-SmallTw(a graph G = (V, E))
Input : A graph G fulfilling the conditions of Theorem 3.3.
Output: The domination number v(G) of G.

A«— A(c,a) /* the value of A is given in Theorem 3.3 */
X —{ueV:d(u)>An/c}
if | X| > An/c then

| use the algorithm of Theorem 3.1 and return the result

else
| use the algorithm of Theorem 2.5 and return the result

THEOREM 3.3. Suppose there is a O(a|”|+‘5|) algorithm computing a minimum
set cover of any input (U,S). Let ¢ > 0 be a constant. Let G be a hereditary class of
graphs such that tw(G) < ¢- A(G) for all G € G. Furthermore, suppose that there
is an algorithm that for any input graph G € G computes a tree decomposition of
width at most ¢ - A(G) in polynomial time.

Then there is a max(a?"= /¢ gletDAn/eynOW) time algorithm to solve the MDS
problem for all input graphs of G, where X = A(c,) = ﬁﬁi and d = 1/log,(«).

PRrROOF. The algorithm first constructs the vertex set X containing all vertices
having a degree larger than An/c (see algorithm DS-HighDeg-SmallTw).

By definition, for all v € X, d(v) > An/c. Thus, if | X| > An/c, then we apply
the algorithm of Theorem 3.1, and thus a minimum dominating set can be found
in time o2n—An/cpOM),

Otherwise |X| < An/c and A(G — X) < An/c. Note that G — X belongs to the
hereditary graph class G since it is an induced subgraph of G. Therefore tw(G —
X) < cA(G — X). It follows that tw(G — X) < ecAn/c = An. As adding one vertex
to a graph increases its treewidth at most by one, tw(G) < tw(G — X) + | X| <
A+ Anjc = (c+ 1) n/c. Now our algorithm computes a tree decomposition of
width at most (¢ + 1)An/c in polynomial time, and then it uses the algorithm of
Theorem 2.5. Thus in this case a minimum dominating set can be found in time
4tw(G)nO(1) < 4(c+1))\n/cnO(1).

As a consequence, a minimum dominating set of the graph G can be found in
time maX(Qan)\n/c’ 4(c+1))\n/c)n0(1). 0

COROLLARY 3.4. Under the assumptions of Theorem 3.3, there is an algorithm
of running time max(1.22732”*)‘”/c, 4(C+1)’\"/C)n0(1) to solve the MDS problem for all
input graphs G fulfilling tw(G) < cA(G), where ¢ is a constant, A\ = A(c) =
and d = 1/log,(1.2273).

ACM Journal Name, Vol. V, No. N, Month 20YY.

2
et td

Algorithms for the minimum dominating set problem on some graph classes . 7

Table II. Running time of the algorithm in Corollary 3.4 for some values of ¢

value of ¢ 1.5 2 2.5
running time | O(1.4723™) | O(1.4776™) | O(1.4815™)
value of ¢ 3 4 5
running time | O(1.4845™) | O(1.4887™) | O(1.4916™)

As we have shown, both methods can be adapted to speed up the algorithms by
using any faster Minimum Set Cover algorithms established by future work.

In the rest of the paper we show how the abovementioned general methods can
be applied to dense graphs (Section 4), chordal graphs (Section 5), circle graphs
(Section 5), 4-chordal graphs (Section 7) and weakly chordal graphs (Section 8).
We provide also some algorithms giving a tree decomposition of width at most
c¢A(QG), where ¢ is a constant depending of the considered graph class.

4. DENSE GRAPHS

It is known that problems like Independent Set, Hamiltonian Circuit and Hamil-
tonian Path remain NP-complete when restricted to graphs having a large number
of edges [Schiermeyer 1995]. In this section we first show that DOMINATING SET
also remains NP-complete for c-dense graphs. Then we present an exponential time
algorithm for the MDS problem on this graph class. The algorithm uses the “many
vertices of high degree” approach of the previous section.

Definition 4.1. A graph G = (V, E) is said to be c-dense (or simply dense if
there is no ambiguity), if |E| > en? where c is a constant with 0 < ¢ < 1/2.

An easy way to show that an NP-complete graph problem remains NP-complete
for c-dense graphs, for any ¢ with 0 < ¢ < 1/2, is to construct a graph G’ by
adding a sufficiently large complete graph as new component to the original graph
G such that G’ is c-dense. This simple reduction can be used to show that various
NP-complete graph problems remain NP-complete for c-dense graphs. To name
a few problems: INDEPENDENT SET (since (G’) = a(G) + 1), PARTITION INTO
CLIQUES (since k(G’) = k(G) + 1), VERTEX COVER, FEEDBACK VERTEX SET and
MinimMuM FiLr-IN.

In this way it can be shown that DOMINATING SET is NP-complete for c-dense
graphs by a polynomial-time many-one reduction from the NP-complete problem
DoMINATING SET for split graphs.

THEOREM 4.2. For any constant ¢ with 0 < ¢ < 1/2, the problem to decide,
whether a c-dense graph has a dominating set of size at most k is NP-complete,
even when the inputs are restricted to split graphs.

The main idea of our algorithm is to find a large subset of vertices of large degree.

LEMMA 4.3. For some fited 1 <t <n, 1<t <n-1, any graph G = (V, E)
t—1 -1 —t+ Dt -1
it |51 2 1+ =00 D+ 0= e~

has a subset T C V such that

(1) [T| >t
(i1) for everyv e T, d(v) >t

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 . Serge Gaspers et al.

PROOF. Let 1 <t <n,1 <t <n-1,and a graph G = (V, E) such that there
is no subset T with the previous properties. Then for any subset T C V of size at
least ¢, there exists a vertex v € T such that d(v) < #'. Then such a graph can only
have at most k = k1 + ko edges where : k1 = (¢t — 1)(n — 1)/2 which corresponds to
t — 1 vertices of degree n — 1 and ks = (n —t 4+ 1)(¢' — 1)/2 which corresponds to
n — (t — 1) vertices of degree t' — 1. Observe that if one of the n — (¢ — 1) vertices
has a degree greater than ¢’ — 1 then the graph has a subset T' with the required
properties, a contradiction. [

LEMMA 4.4. FEvery c-dense graph G = (V, E) has a set T CV fulfilling

() 1T > |n— V9 —4n +4n2 — 8cn? — 3
- 2)

9—-4 4n2 — 8en2 — 3
(i) for every v € T, d(v) > {n— 4 n 4+ 721 cn J .y

PrROOF. We apply Lemma 4.3 with ¢ = t—2. Since we have a dense graph, |E| >
en?. Using inequality 14+ ((t—1)(n—1)+(n—t+1)(t—3))/2 < cn? we obtain that in a
3—vV9—4n+4n2—8cn? >t O

5 > t.

dense graph the value of ¢ in Lemma 4.3 is such that n+
Using the “many vertices of high degree” approach we establish

THEOREM 4.5. For any c with 0 < ¢ < 1/2, there is a O(1.2273(1FV1=2)n) time
algorithm to solve the MDS problem on c-dense graphs.

ProOF. Combining Theorem 3.1, Corollary 3.2 and Lemma 4.4 we obtain an
algorithm for solving the Minimum Dominating Set problem in time

2n— \‘n—@J
1.2273 2 — 0(1.2273n(1+m)).

O
5. CHORDAL GRAPHS

In this section we present an exponential time algorithm for the Minimum Domi-
nating Set problem on chordal graphs. We use a treewidth based approach with a
faster algorithm for solving MDS on chordal graphs using clique trees.

A graph is chordal if it has no chordless cycle of length greater than three.
Chordal graphs are a well-known graph class with its own chapter in Golumbic’s
monograph [1980]. Split graphs, strongly chordal graphs and undirected path
graphs are well-studied subclasses of chordal graphs.

We shall use the clique tree representation of chordal graphs that we view as
a tree decomposition of the graph. A tree T is as clique tree of a chordal graph
G = (V, E) if there is a bijection between the maximal cliques of G and the nodes
of T such that for each vertex v € V the cliques containing v induce a subtree of
T. It is well-known that tw(G) > w(G) — 1 for all graphs. Furthermore the clique
tree of a chordal graph G is an optimal tree decomposition of G, i.e. its width is
precisely w(G) — 1.

LEMMA 5.1. There is a 3t nCW) time algorithm to compute a minimum dom-
inating set on chordal graphs.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 9

PrOOF. The algorithm of Alber et al. in Theorem 2.5 uses a nice tree decom-
position of the input graph and a standard bottom up dynamic programming on
the tree decomposition. The crucial idea is to assign three different “colors” to the
vertices of a bag:

—*“black”, meaning that the vertex belongs to the dominating set,
—*“white”, meaning that the vertex is already dominated,
—“gray”, meaning that the vertex is not yet dominated.

Now let us assume that the input graph is chordal. A clique tree T' of G can be
computed in linear time [Blair and Peyton 1993]. By Lemma 2.4, a nice optimal
tree decomposition of G can be computed from the optimal tree decomposition T’
in time O(n) and it has at most 4n nodes. Since G is chordal every bag in the
nice tree decomposition is a clique. Therefore no bag can have both a black vertex
and a gray vertex. Due to this restriction there are at most 21! possible so-called
vector colorings of a bag X (instead of 31XI for general graphs).

Consequently the running time of the algorithm of Alber et al. for chordal graphs
is 3tw(@pOM) where the only modification is to use clique trees and to restrict
allowed vector colorings of a bag such that black and gray vertices simultaneously
are forbidden. O

We use the following Corollary of Theorem 3.1.

COROLLARY 5.2. There is an algorithm taking as input a graph G and a clique
C of G and solving the MDS problem in time O(1.22732"~1C1),

PRrROOF. Note that every vertex in C has degree at least |C| —1. O

Our algorithm on chordal graphs works as follow: If the graph has large treewidth
then it necessarily has a large clique and we apply Corollary 5.2. Otherwise the
graph has small treewidth and we use Lemma 5.1.

THEOREM 5.3. There is an O(1.4124™) time algorithm to solve the MDS problem
on chordal graphs.

Proor. If tw(G) < 0.3142n, by Lemma 5.1, MDS is solvable in time
O(3%312n) = ((1.4124"™). Otherwise, tw(G) > 0.3142n and using Corollary 5.2 we
obtain an O(1.22732770:3142n) — ()(1.4124") time algorithm. [

6. CIRCLE GRAPHS

In this section, we present an exponential time algorithm for MDS on circle graphs
in a treewidth based approach.

A circle graph is an intersection graph of chords in a circle. More precisely,
G is a circle graph, if there is a circle with a collection of chords, such that one
can associate in a one-to-one manner a chord to each vertex of G such that two
vertices are adjacent in G if and only if the corresponding chords have a nonempty
intersection. The circle and all the chords are called a circle model of the graph.

Our algorithm heavily relies on a linear upper bound on the treewidth of circle
graphs in terms of the maximum degree: tw(G) < 4A(G) for every circle graph G.
The principal result of this section is a constructive proof of this inequality.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 . Serge Gaspers et al.

Our approach is based on the fundamental ideas of Kloks’ algorithm to compute
the treewidth of circle graphs [Kloks 1996]. We start with a brief summary of this
algorithm. Consider the circle model of a circle graph G. Go around the circle
and place a new point (a so-called scanpoint) between every two consecutive end
points of chords. The treewidth of a circle graph can be computed by considering
all possible triangulations of the polygon P formed by the convex hull of these scan-
points. The weight of a triangle in this triangulation is the number of chords in the
circle model that cross this triangle. The weight of triangulation 7 is the maximum
weight of a triangle in 7. The treewidth of the graph is the minimum weight minus
one over all triangulations 7 of P. To find an optimal tree decomposition of G,
the algorithm in [Kloks 1996] uses dynamic programming to compute a minimum
weight triangulation of P.

THEOREM 6.1 [KLOKS 1996]. There exists an O(n3) algorithm to compute the
treewidth of circle graphs, that also computes an optimal tree decomposition.

We rely on the following technical definitions in our construction of a tree de-
composition of width at most 4A(G) for each circle graph G. The construction will
be given in the proof of Theorem 6.5.

Definition 6.2. A scanline s = <d,6> is a chord connecting two scanpoints a
and b.

To avoid confusion, we call vertex chords the chords of the circle model that
represent the vertices of the corresponding circle graph. Scanlines are chords as
defined above and the general term chord refers to both scanlines and vertex chords.
To emphasize the difference between scanlines and vertex chords we use different
notations: A vertex chord v connecting two end points ¢ and d in the circle model
of the graph is denoted v = [¢, d]. This notation is also used if we consider chords in
general. We adapt the standard convention that two vertex chords never intersect
on the circle. Moreover, we say that two scanlines with empty intersection or
intersecting in exactly one point on the circle (a scanpoint) are non-crossing.

Definition 6.3. Let ¢; and ¢y be two non-crossing chords. A chord ¢ is between
c1 and ¢y if every path from an end point of ¢; to an end point of ¢y along the circle
passes through an end point of c.

Definition 6.4. A set C' of chords is parallel if and only if

(i) the chords of C' are non-crossing, and
(ii) if |C| > 2, then for every subset of three chords in C, one of these chords is
between the other two.

We refer to Figure 1 for examples of sets of chords that are parallel and non
parallel.

A set S of scanlines is maximal parallel if there exists no vertex chord v such
that S U {v} is parallel. Given a maximal parallel set of scanlines S, consider the
maximal size subpolygons of P that do not properly intersect any scanline of S
(but there may be scanlines of S on their boundaries). For such a subpolygon of P,
either one or two edges are scanlines of S. We say that these polygons are delimited
by one or two scanlines of S and we call outer polygon Ps with respect to S such

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 11

not parallel not parallel parallel

Fig. 1. Examples of parallel and non parallel sets of chords

a polygon delimited by one scanline § € S and inner polygon Ps, 5, with respect
to S such a polygon that is delimited by two scanlines §1, 52 € S and contains at
least one end point of a vertex chord (otherwise, it is already triangulated). The
inner and outer polygons are defined with respect to a set of maximal parallel set
of scanlines S, but we allow ourselves to not state this explicitely if it is clear from
the context.

The following theorem is one of the main results of this paper. It shows that the
treewidth tw(G) of circle graphs can be upper bounded by a linear function of the
maximum degree A(G) of the graph G.

The idea for the proof is to construct an algorithm that computes a triangulation
of P (the triangulation is not necessarily optimal) and to prove that each triangle
of this triangulation has weight at most 4A(G). Before presenting the algorithm
in detail, let us mention some of its major ideas. The algorithm separates P into
“slices” by scanning some appropriately chosen vertex chords in the circle model
of the graph, where a vertex chord v is scanned by adding two sharp triangles to
the partly constructed triangulation: two scanlines parallel to v and one scanline
crossing v to form two triangles. The slices are made thinner and thinner by adding
scanlines to the partly constructed triangulation until no slice can be cut into a pair
of slices by scanning a vertex chord any more, and this procedure gives a maximal
parallel set of scanlines for the slice. When triangulating the “middle part” of
any slice, we use the property that no vertex chord is parallel to the two scanlines
delimiting the slice to show that the algorithm will not create triangles with a
weight exceeding 4A(G). The borders of the slices are triangulated recursively by
first separating them into slices (in the perpendicular orientation of the previous
slices) by scanning some chords and processing the resulting slices similarly.

The most interesting procedure of our algorithm is TriangInner, which is also
crucial for our upper bound 4A(G).

THEOREM 6.5. For every circle graph G, tw(G) < 4A(G).

PrOOF. The theorem clearly holds for edgeless graphs. Let G be a circle graph
with at least one edge and P be the polygon as previously described. We construct
a triangulation of P such that every triangle has weight at most 4A, that is it inter-
sects at most 4A vertex chords, and therefore the corresponding tree decomposition
has width at most 4A — 1.

Note that by the definition of a circle graph, every vertex chord intersects at
most A other vertex chords. The triangulation of the polygon P is obtained by
constructing the corresponding set of scanlines S which is explained by the follow-

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 . Serge Gaspers et al.

ing procedures. Along with the description of our algorithm, we also analyze the
number of vertex chords that cross each triangle and show that it is less than or
equal to 4A.

We say that a procedure is valid if it does not create triangles with weight higher
than 4A and if it does not create crossing scanlines.

lAlgorithm TriangCircle(circle model of a graph G)

Input : A circle model of a graph G.

Output: A triangulation of weight at most 4A(G) of the polygon defined by the
scanpoints of this circle model.

Choose any vertex chord v in the circle model of G;
S « ScanChord(,v);
return ParaCuts(S);

The validity of Algorithm TriangCircle depends on the validity of the proce-
dures ScanChord and ParaCuts. Note that no scanline crosses v, which is a
condition for ScanChord. Moreover ScanChord produces a parallel set of scan-
lines, which is a condition for ParaCuts.

ScanChord(S,v = [a,b])

Input : A set of scanlines S and a vertex chord v = [a, b] such that no scanline
of S crosses v.

Output: A set of scanlines triangulating the polygon defined by the neighboring
scanpoints of the end points of v.

Let ¢ and & (respectively d and d') be the two scanpoints closest to a
(respectively b) such that the order of the points on the circle is ¢, a, &, d'.,b,d:
Let 51 = (¢,d), 32 = (¢, d') and 33 = (¢, d');
if ¢=d (or&d =d') then

L X — {82} (or {51});

else

| X« {51,%,5}

return X;

The procedure ScanChord returns a set X of one or three scanlines. They form
at most two triangles: ¢, dN, d’ and c, d ,¢'. Each of them intersects at most A + 1
vertex chords: v and the vertex chords crossing v. Furthermore, at most A vertex
chords cross §; and §s, precisely the vertex chords that cross v. The scanlines of
X do not intersect any scanline of S as any scanline intersecting a scanline of X
intersects also v.

In the procedure ParaCuts, the notions of inner and outer polygons are used
with respect to S (see Figure 2). In the while-loop, the chosen vertex chord v does
not cross a scanline of S since S U {v} is required to be parallel. Thus, when the
procedure ScanChord is called, its conditions are satisfied. After the while-loop,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 13

ParaCuts(S)

Input : A set of parallel scanlines S.

Output: A triangulation of weight at most 4A(G) of the polygon defined by the
scanpoints of the circle model.

while S is not mazimal parallel do
Choose a vertex chord v such that S U {v} is parallel;
L S « S UScanChord(S, v);
Let 1 and So be the scanlines delimiting the two outer polygons;
S «— SU TriangOuter(S, §;) U TriangOuter(S, 52);
foreach inner polygon F; ; do

| S« SUTriangInner(S,t,1s)
return S

S is maximal parallel. Every vertex chord intersecting an outer polygon crosses
therefore the scanline delimiting this outer polygon, and there is no vertex chord
between two scanlines delimiting an inner polygon, which are necessary conditions
for TriangOuter and TriangInner. Moreover, at most A vertex chords cross
each of the delimiting scanlines and no scanline of S intersects the inner and outer
polygons.

TriangOuter(S, 5 = (a, b))
Input : A set of scanlines S and a scanline § € S satisfying the following
conditions:
(i) every vertex chord intersecting Ps crosses 3,
(ii) at most 2A vertex chords cross §, and
(iil) no scanline of S intersects Ps.
Output: A set of scanlines triangulating the outer polygon Ps.
X « 0;)
foreach scanpoint p; € Ps \ {a, b} do
return X

In the procedure TriangOuter, at most 2A vertex chords intersect the outer
polygon P;z. So, any triangulation of Pz produces triangles with weight at most
2A. As the procedure produces a triangulation of Pj, it is valid.

Consider the input of the procedure TriangInner. There are at most 3A vertex
chords inside the quadrilateral aj, 51, 52, as since there is no vertex chord crossing
both the lines a,as and by, by (therejs no vertex chord between §; and §3). As
fewer vertex chords cross @i, as than by,be, at most 3A/2 vertex chords cross the
new scanline £ = (a1, az). So, when OuterParaCuts(9,?) is called, the condition
that ¢ intersects at most 2/ vertex chords is respected. For every end point e; of a
vertex chord v; that crosses §1, two triangles are created: aq, Ji,l, LL and cii, cii,l, J;

The following claim is both the bottleneck and the crucial point of our argument.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 . Serge Gaspers et al.

Fig. 2. ParaCuts Fig. 3. TriangInner

TriangInner(S, §1 = <€l1, l~)1>, §2 = <d2, 62>)
Input : A set of scanlines S and two scanlines §1, 52 € S satisfying the
following conditions:
(i) there is no vertex chord between §; and s,
(ii) at most A vertex chords cross one of §; and 53, say 3o,
(iii) at most 2A vertex chords cross the other scanline, §;, and
(iv) no scanline of S intersects the inner polygon Ps, s, .
Output: A set of scanlines triangulating Ps, 3,.

Let the end points of 51 and S5 be ordered a, 51, 52, ao around the circle.
Assume w.l.o.g., that fewer vertex chords cross the line a1, az than the line
b1, ba;
Let f: <L~7,1, &2);
X — {th
X « X UOuterParaCuts(X, f);
Go around the circle from by to by (without passing through a; and as).
Denote by ey, ..., ex the encountered end points of those vertex chords that
cross §1;
foreach ¢;,i = 1..k do

Let 8; = (a1, d;) with d; being the scanpoint just after e;;

Let 52/ = <d}_, CL_Q with dQ = bl; B
Let 8§ = (d;—1,d}) with d} being the scanpoint just before d;;
X — X U{s,35/, 38"}
X «— X UOuterParaCuts(X, s/);

Let §3 = <Jk762> and §4 = <l~)2,€l1>;

X—XU {53, 54};

X «— X UOuterParaCuts(X, 33);

return X

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 15

CLAM 6.6. The triangle ai,d;_1,d; intersects at most 4\ vertex chords.

PRrROOF. Observe that every vertex chord intersecting this triangle and not cross-
ing §1 crosses either v; or v;_1. As at most 2A vertex chords cross 31, at most A
cross v; and at most A cross v;_1, the weight of this triangle is at most 4A. O

Moreover, at most 2A + 1 vertex chords cross 5/ and at most 2A vertex chords
cross §”. So, the weight of the triangle cii,cii,l,cfg is at most 2A + 1 and when
OuterParaCuts(S, §/) is called, the condition that the second parameter of the
procedure is a scanline that crosses at most 2A vertex chords is respected.
After adding the scanlines 3 and 84 we obtain two more triangles: @y, dy, b2 and
a1,bo,as. The first one intersects at most 4A vertex chords: at most 2A cross 31,
at most A cross v, and at most A cross §5. At most 3A vertex chords intersect the
triangle aq, l~)2, ao: at most 2A intersect 5; and at most A intersect 5. Moreover
at most 2A vertex chords cross §3. So, the conditions of OuterParaCuts(S, 33)
are respected.

OuterParaCuts(S, 5 = (a, b))
Input : A set of scanlines S and a scanline § € S such that
(1) at most 2A vertex chords cross §, and
(ii) no scanline of S intersects Ps.
Output: A set of scanlines triangulating the outer polygon Ps.
X — {5}
while X is not a mazimal parallel in P; do
Choose a chord v € P; such that X U {v} is parallel;
L X «— X UScanChord(X,v);

Let ¢ be the scanline delimiting the recently obtained outer polygon with
respect to X that is a subpolygon of Ps;
X « X U TriangOuter (X, ?);
foreach inner polygon P; ;, in Ps; do
| X < X U TriangInner(X,t,);
return X

The procedure OuterParaCuts is similar to ParaCuts on the outer polygon
delimited by 5. A new set of scanlines X « {3} is created and is made maximal
parallel by calling ScanChord. If {5} is already maximal parallel, then Triang-
Outer(X, 3) is called and the conditions of that procedure are respected. If other
scanlines had to be added to X to make it maximal parallel, the procedure Triang-
Outer(X,?) is called for the outer polygon where # is a scanline of X intersecting
at most A vertex chords. Moreover, the procedure TriangInner(X,?;,%5) is called
for the inner polygons. Every scanline delimiting the inner polygons intersects at
most A vertex chords, except § that can intersect up to 2A vertex chords. So,
we respect the condition for TriangInner that one scanline intersects at most A
vertex chords and the other one at most 2A.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 . Serge Gaspers et al.

We have provided a recursive algorithm to triangulate the polygon P and have
shown that the obtained triangulation does not contain triangles intersecting more
than 4A vertex chords. Thus the corresponding tree decomposition of G has width
at most 4A —1. O

Now we apply our treewidth based approach of Section 3 to circle graphs. By the
above theorem, for every circle graph G, tw(G) < 4A(G). Furthermore the class
of circle graphs is hereditary and there is a polynomial time algorithm to com-
pute an optimal tree decomposition of circle graphs (Theorem 6.1). Consequently
Theorem 3.3 and Corollary 3.4 can be applied and we obtain

THEOREM 6.7. There is an algorithm to compute for circle graphs a minimum
dominating set in time O(1.4887™).

7. 4-CHORDAL GRAPHS

The chordality of a graph is the size of its longest chordless cycle. A graph is
4-chordal if its chordality is at most 4. Thus 4-chordal graphs are a superclass
of chordal graphs. We show in this section that, for any 4-chordal graph G, its
treewidth is at most 3A(G).

A vertex set S C V is a separator if G — S is disconnected. Given two vertices u
and v, S is a u, v-separator if v and v belong to different connected components of
G — S, and S is then said to separate u and v. A u,v-separator S is minimal if no
proper subset of S separates u and v. A vertex set S is a minimal separator of G
if there exist two vertices w and v in G such that S is a minimal u, v-separator. A
connected component C of G — S such that N(C) = S is called a full component
associated to S.

LEMMA 7.1 [GoLUMBIC 1980]. A set of vertices S of a graph G is a minimal
separator of G if and only if there are two distinct full components associated to S.

We first show that any minimal separator of a 4-chordal graph G has at most
2A(G) vertices. We start with some properties of minimal separators in arbitrary
graphs.

LEMMA 7.2 [BERRY ET AL. 2000]. Let X C V(G) be a set of vertices inducing
a connected subgraph and let C be a connected component of G— N[X]. Then N(C)
is a minimal separator of G.

Given a minimal separator S of a graph G, the following lemma provides a
technique for computing new minimal separators “close to” S.

LEMMA 7.3 [KLOKS AND KRATSCH 1998]. Let S be a minimal separator of an

arbitrary graph G. Consider a vertex x € S and a connected component D of
G — (SUN(z)). Then T = N(D) is a minimal separator of G.

LEMMA 7.4. Let S be a minimal separator of the 4-chordal graph G. Consider
a vertex x € S and a connected component D of G — (S U N(z)). If the minimal
separator T = N (D) is not a subset of S, then T is of size at most 2A(G).

PRrROOF. T is a minimal separator of G by Lemma 7.3. Let C' be the component
of G — S containing D.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 17

Partition T into Te = TNC and Ts = T'NS. We claim that for any y € Ts\ N(x)
and for any z € Te, y and z are adjacent. By contradiction, let Pp be a chordless
path from y to z whose internal vertices are contained in D, and Pp a chordless
path from z to y whose internal vertices are in a full component F' associated to .S,
different from C. Note that © — Pr — y — Pp — z — x form a chordless cycle of G.
Also Pr has at least one internal vertex, thus this cycle is of length at least 5 — a
contradiction.

By the previous claim, all the vertices of Ts \ N(z) are adjacent to some vertex
z € TNC. Consequently |T| < |N(z)|+|N(z)| <2A(G). O

THEOREM 7.5. For any minimal separator S of a 4-chordal graph G, we have
5] < 2A(G).

PROOF. Berry et al. have shown in [Berry et al. 2000] that the following process
produces all minimal separators of a graph.

During the initialization step compute, for each vertex x, the minimal separators
of type N(C), for each connected component C' of G — Nz] (see Lemma 7.2).

Then we repeat the following main loop, until no new minimal separators are
added: for each minimal separator S obtained during the previous iteration (or
during the initialization, if we are in the first iteration), for each vertex x € S and
each component D of G — (S U N(x)), if T = N(D) is not already in the set of
computed minimal separators, we add it to this set (see also Lemma 7.3).

Clearly the minimal separators computed in the initialization step are of size at
most 2A(G). Suppose that all the minimal separators computed before the kth
iteration of the main loop are of size at most 2A(G). The separators T' obtained
during this iteration are also of size at most 2A(G), by Lemma 7.4.

Since by [Berry et al. 2000], this algorithm generates all minimal separators of
G, we conclude that all minimal separators are of size at most 2A(G). O

The following generic algorithm takes a graph G = (V, E) together with a vertex
subset Z and a component W of G — Z and computes a tree-decomposition of
G[Z U W] such that one of the bags contains Z. In particular, MakeDec(G, 0, V')
computes a tree decomposition of G. By an appropriate choice of the bags, we will
show that 4-chordal graphs have tree-decompositions of width 3A(G).

A very similar approach has been used in [Bodlaender et al. 1995] to show that
a tree decomposition of a graph G = (V| E) with treewidth at most O(klogn),
where k is the treewidth of G and n = |V, can be found in polynomial time. For
the sake of completeness, we recall that algorithm MakeDec(G, Z, W) computes
a tree decomposition of G[Z U W].

LEMMA 7.6 (SEE ALSO [BODLAENDER ET AL. 1995]). A tree decomposition of
G[Z UW] is computed by algorithm MakeDec(G,Z,W).

PrOOF. We prove the statement by induction on the recursive structure of the
algorithm. The claim is true if the new bag B is exactly Z U W. Clearly every
vertex of Z U W appears in an least one bag. Observe that each edge of G[Z U W]
has both endpoints in B, or both endpoints in Z; UW; for some component W; C W
of G — B. Therefore each edge is covered by a bag of the tree decomposition.

It remains to show that for each vertex v € Z U W, the bags of T' containing
v induce a connected subtree. If v ¢ B, all bags containing v appear in same

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 . Serge Gaspers et al.

lAlgorithm MakeDec(G, Z, W)

Input : An arbitrary graph G = (V, E), a vertex subset Z and a component W
of G — Z.

Output: A tree decomposition such that one of the bags contains Z.

Choose B C Z U W such that Z is strictly contained in B;

/* Algorithms to compute B are given in Theorem 7.7 for 4-chordal
and in Theorem 8.2 for weakly chordal graphs. */

foreach component W; of G — B s.t. W; C W do

L T; — MakeDec(G, Z;, W,);

Let T be the tree decomposition obtained as the disjoint union of all T;’s, to

which we add a node corresponding to the bag B, adjacent in each T; to a bag

containing Z;;

return T

tree-decomposition T;, and the claim holds by induction. If v € B, then v appears
exactly in the subtrees T; such that v € Z;. Since the bag B is adjacent to a bag
of T; containing Z;, the bags of T containing v induce a connected subtree. [

In the following, we use algorithm MakeDec(G, Z, W) such that at each re-
cursive call Z is a minimal separator of G and W is a full component associated
to Z.

THEOREM 7.7. For any 4-chordal graph G, tw(G) < 3A(G). Moreover, there
is a polynomial time algorithm computing, for any 4-chordal input graph G, a tree
decomposition of width at most 3A(G).

PrOOF. The theorem clearly holds for edgeless graphs. Let G be a 4-chordal
graph with at least one edge. We construct a tree decomposition using algorithm
MakeDec and such that all bags are of size at most 3A(G). At the initial step
MakeDec(G,0,V), let the new bag be By = N|[xg], for some vertex zg. Clearly
|Bo| < 3A(G). For each connected component C' of G — By, its neighborhood
S = N(C) is a minimal separator, by Lemma 7.2. The algorithm recursively calls
MakeDec(G, S, C) for each component C' of G — By. We keep as invariant that
for each recursive call MakeDec(G, Z,W), Z is a minimal separator and W is a
full component associated to it.

Now we claim that for such a call MakeDec(G, Z, W), we can always construct
a new bag B of size at most 3A(G). Choose an arbitrary vertex z € Z and let B =
ZUJ(N(x)NW). In particular it is of size at most 3A(G) by Theorem 7.5. For each
component W' C W of G—(ZUN (x)), its neighborhood Z' = Ng (W) is a minimal
separator by Lemma 7.3. The recursive calls are of type MakeDec(G, Z',W'),
where Z’ is a minimal separator of G and W’ is a full component of G—Z’ associated
to Z', so the above construction can be iterated.

The tree decomposition can be obtained in O(nm) time, since for each newly
created bag B the computation of the components of G— B and their neighborhoods
can be performed in linear time. [

Combining Theorem 7.7, Theorem 3.3 and Corollary 3.4 one establishes :

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 19

THEOREM 7.8. There is an O(1.4845™) algorithm to compute a minimum dom-
inating set for 4-chordal graphs.

8. WEAKLY CHORDAL GRAPHS

A graph G is weakly chordal if both G and its complement are 4-chordal. It is easy
to check that chordal graphs are a proper subclass of weakly chordal graphs, which
are in turn a proper subclass of 4-chordal graphs. The treewidth of weakly chordal
graphs can be computed in polynomial time [Bouchitté and Todinca 2001].

In this section we show that for any weakly chordal graph G its treewidth is at
most 2A(G).

For weakly chordal graphs, each minimal separator S is contained in the neigh-
borhood of a vertex or of an edge. We will construct a tree decomposition of the
graph such that each bag corresponds to the closed neighborhood of a vertex or of
an edge.

LEMMA 8.1 [HAYWARD 1997]. Let G be a weakly chordal graph. For any mini-
mal separator S of G and any full component C of G — S associated to S, there is
a vertex v € C or an edge e of G[C] such that S is contained in the neighborhood
of vertex v or of edge e.

THEOREM 8.2. For any weakly chordal graph G, tw(G) < 2A(G).

PROOF. The theorem clearly holds for edgeless graphs. Let G be a weakly chordal
graph with at least one edge. The construction of the tree decomposition is quite
similar to the one of Theorem 7.7, based on algorithm MakeDec. We use bags
of size at most 2A(G). At the first call MakeDec(G,0,V), start with a bag
By = Nlz], for some arbitrary vertex z. For each component connected C of
G — N|z], its neighborhood S = N(C) is a minimal separator. We recursively call
MakeDec(G, S, C) for each component C' of G — By. We keep as invariant that
for each recursive call MakeDec(G, Z, W), Z is a minimal separator and W is a
full component associated to it. We show that under these assumptions, the new
bag B can be chosen of size at most 2A(G).

We consider, like in Lemma 8.1, a vertex v € W such that Z C N(v) or an edge
e of G[W] such that Z C N(e). In the former case we choose N[v] as the new
bag B, and in the latter we take B = NJe]. In both cases, Z C B and the size of
B is at most 2A(G). For each component W’ C W of G — B, its neighborhood
7' = Ng(W') is a minimal separator by Lemma 7.2. Hence we recursively construct
a tree decomposition with bags of size at most 2A(G). O

Combining Theorem 8.2, Theorem 3.3 and Corollary 3.4 one establishes :

THEOREM 8.3. There is an O(1.4776™) algorithm to compute a minimum dom-
inating set for weakly chordal graphs.

9. CONCLUSIONS

We presented several exponential time algorithms to solve the Minimum Dominat-
ing Set problem on graph classes for which this problem remains NP-hard. All
these algorithms are faster than the best known algorithm to solve MDS on general
graphs. We have also shown that any faster algorithm for the Minimum Set Cover

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 . Serge Gaspers et al.

problem, i.e. of running time O(aI*I5!) with o < 1.2273, could immediately be
used to speed up all our algorithms.

Besides classes of sparse graphs (as e.g. cubic graphs [Fomin and Hgie 2006])
two other graph classes are of interest: split and bipartite graphs. For split graphs,
combining ideas of [Fomin et al. 2004] and [van Rooij and Bodlaender 2008] one eas-
ily obtains an O(1.2273™) algorithm. For bipartite graphs, recently Liedloff [2008]
established a dynamic programming based algorithm of running time O(1.4143™).

The “high degree” and the “treewidth based” method of our paper can most likely
also be applied to other NP-hard problems for constructing moderately exponential
time algorithms when restricted to graph classes with the corresponding properties.
One example is the Independent Dominating Set problem (see [Gaspers and Liedloff
2007)).

The bounds on the treewidth in terms of the maximum degree are interesting
in their own and it is likely that such bounds for circle graphs, 4-chordal graphs,
weakly chordal graphs or other graph classes can be used to construct exponential
time algorithms for NP-hard problems on special graph classes in a way similar to
our approach for domination.

REFERENCES

ALBER, J., BODLAENDER, H. L., FERNAU, H., KLOKS, T., AND NIEDERMEIER, R. 2002. Fixed
parameter algorithms for dominating set and related problems on planar graphs. Algorith-
mica 33, 4, 461-493.

BERRY, A., BORDAT, J., AND Coais, O. 2000. Generating all the minimal separators of a graph.
Int. J. Found. Comput. Sci. 11, 3, 397-403.

BrAIR, J. R. S. AND PEYTON, B. 1993. An introduction to chordal graphs and clique trees. In
Graph Theory and Sparse Matriz Computation. Vol. 56. Springer-Verlag, Berlin, 1-29.

BODLAENDER, H. L., GILBERT, J. R., HAFSTEINSSON, H., AND KLOKS, T. 1995. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18, 2, 238-255.

BODLAENDER, H. L. AND THILIKOS, D. M. 1997. Treewidth for graphs with small chordality.
Discrete Appl. Math. 79, 1-3, 45-61.

BoorH, K. S. AND JOHNSON, J. H. 1982. Dominating sets in chordal graphs. SIAM J. Com-
put. 11, 1, 191-199.

BOUCHITTE, V. AND TODINCA, 1. 2001. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput. 31, 1, 212-232.

BRANDSTADT, A., LE, V. B., AND SPINRAD, J. P. 1999. Graph classes: A survey. SIAM Monogr.
Discrete Math. Appl., Philadelphia, PA, USA.

DoRrN, F. 2006. Dynamic programming and fast matrix multiplication. In Proceedings of the 14th
conference on Annual European Symposium (ESA). LNCS, vol. 4168. Springer-Verlag, Berlin,
280-291.

FowmiN, F. V., GRANDONI, F., AND KRATSCH, D. 2005a. Measure and conquer: Domination - A
case study. In Proceedings of the 32nd International Colloquium on Automata, Languages and
Programming (ICALP). LNCS, vol. 3580. Springer-Verlag, Berlin, 191-203.

Fomin, F. V., GRANDONI, F., AND KRATSCH, D. 2005b. Some new techniques in design and
analysis of exact (exponential) algorithms. Bull. EATCS 87, 47-77.

FoMmin, F. V. AND Hoig, K. 2006. Pathwidth of cubic graphs and exact algorithms. Inf. Process.
Lett. 97, 5, 191-196.

FoMmiIN, F. V., KRATSCH, D., AND WOEGINGER, G. J. 2004. Exact (exponential) algorithms for the
dominating set problem. In Proceedings of the 30th International Workshop on Graph- Theoretic
Concepts in Computer Science (WG). LNCS, vol. 3353. Springer-Verlag, Berlin, 245-256.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Algorithms for the minimum dominating set problem on some graph classes . 21

GASPERS, S. AND LIEDLOFF, M. 2007. A branch-and-reduce algorithm for finding a minimum in-
dependent dominating set in graphs. Tech. Rep. No 344, Department of Informatics, University
of Bergen, Norway.

GoLuMBIC, M. C. 1980. Algorithmic graph theory and perfect graphs. Academic Press, New York.

GRANDONI, F. 2006. A note on the complexity of minimum dominating set. J. Discrete Algo-
rithms 4, 2, 209-214.

HaywarD, R. B. 1997. Meyniel weakly triangulated graphs I: Co-perfect orderability. Discrete
Appl. Math. 73, 3, 199-210.

IwaMma, K. 2004. Worst-case upper bounds for kSAT. Bull. EATCS 82, 61-71.

KeiL, J. M. 1993. The complexity of domination problems in circle graphs. Discrete Appl.
Math. 42, 1, 51-63.

Kroks, T. 1994. Treewidth: Computations and approzimations. LNCS, vol. 842. Springer-Verlag,
Berlin.

Kroks, T. 1996. Treewidth of circle graphs. Int. J. Found. Comput. Sci. 7, 2, 111-120.

Kroks, T. AND KrATscH, D. 1998. Listing all minimal separators of a graph. SIAM J. Com-
put. 27, 3, 605-613.

LiEDLOFF, M. 2008. Finding a dominating set on bipartite graphs. Inf. Process. Lett. 107, 5,
154-157.

RANDERATH, B. AND SCHIERMEYER, I. 2004. Exact algorithms for minimum dominating set. Tech.
Rep. zaik-469, Zentrum fiir Angewandte Informatik, Koln, Germany.

ROBERTSON, N. AND SEYMOUR, P. D. 1986. Graph minors. II. algorithmic aspects of tree-width.
J. Algorithms 7, 3, 309-322.

SCHIERMEYER, [. 1995. Problems remaining NP-complete for sparse or dense graphs. Discuss.
Math. Graph Theory 15, 33—41.

SCHONING, U. 2005. Algorithmics in exponential time. In Proceedings of the 22nd Annual Sympo-
stum on Theoretical Aspects of Computer Science (STACS). Vol. 3404. Springer-Verlag, Berlin,
36-43.

VAN Roo1, J. M. M. AND BODLAENDER, H. L. 2008. Design by measure and conquer, a faster
exact algorithm for dominating set. In Proceedings of the 25th Annual Symposium on The-
oretical Aspects of Computer Science (STACS). Dagstuhl Seminar Proceedings, vol. 08001.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 657—668.

WOEGINGER, G. J. 2003. Exact algorithms for NP-hard problems: A survey. In Proceedings of
the 5th International Workshop on Combinatorial Optimization - Eureka, you shrink! LNCS,
vol. 2570. Springer-Verlag, Berlin, 185-207.

WOEGINGER, G. J. 2004. Space and time complexity of exact algorithms: Some open problems.
In Proceedings of the 1st International Workshop on Parameterized and Exact Computation
(IWPEC). LNCS, vol. 3162. Springer-Verlag, Berlin, 281-290.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

