
Exponential Time Algorithms:
Structures, Measures, and Bounds

Serge Gaspers

February 2010

2

Preface

Although I am the author of this book, I cannot take all the credit for this work.

Publications

This book is a revised and updated version of my PhD thesis. It is partly based on the following

papers in conference proceedings or journals.

[FGPR08] F. V. Fomin, S. Gaspers, A. V. Pyatkin, and I. Razgon, On the minimum feedback

vertex set problem: Exact and enumeration algorithms, Algorithmica 52(2) (2008), 293–

307. A preliminary version appeared in the proceedings of IWPEC 2006 [FGP06].

[GKL08] S. Gaspers, D. Kratsch, and M. Liedloff, On independent sets and bicliques in graphs,

Proceedings of WG 2008, Springer LNCS 5344, Berlin, 2008, pp. 171–182.

[GS09] S. Gaspers and G. B. Sorkin, A universally fastest algorithm for Max 2-Sat, Max 2-

CSP, and everything in between, Proceedings of SODA 2009, ACM and SIAM, 2009,

pp. 606–615.

[GKLT09] S. Gaspers, D. Kratsch, M. Liedloff, and I. Todinca, Exponential time algorithms

for the minimum dominating set problem on some graph classes, ACM Transactions on

Algorithms 6(1:9) (2009), 1–21. A preliminary version appeared in the proceedings of

SWAT 2006 [GKL06].

[FGS07] F. V. Fomin, S. Gaspers, and S. Saurabh, Improved exact algorithms for counting

3- and 4-colorings, Proceedings of COCOON 2007, Springer LNCS 4598, Berlin, 2007,

pp. 65–74.

[FGSS09] F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov, On two techniques of

combining branching and treewidth, Algorithmica 54(2) (2009), 181–207. A preliminary

version received the Best Student Paper award at ISAAC 2006 [FGS06].

[FGK+08] F. V. Fomin, S. Gaspers, D. Kratsch, M. Liedloff, and S. Saurabh, Iterative com-

pression and exact algorithms, Proceedings of MFCS 2008, Springer LNCS 5162, Berlin,

2008, pp. 335–346.

Acknowledgments

First and foremost, I would like to express my gratitude to my PhD supervisor Fedor V. Fomin.

His guidance, insight, and knowledge were of great help for my intellectual advancement. Ideas

were always much clearer when leaving his office than they were before.

I would also like to sincerely thank my co–supervisor Pınar Heggernes for being a great

teacher, an instructive researcher and a welcoming person. I would also like to thank the

members of my PhD committee, Dag Haugland, Thore Husfeldt, and Ryan Williams. My

deepest thanks go to my Master thesis supervisor, Dieter Kratsch, whom I owe my interest in

algorithms, who inspired me, taught me, and introduced me to the area of exponential time

algorithms.

Many thanks for collaboration, fruitful discussions, inspiring ideas, and teaching me valu-

able things go to Jérémy Barbay, Stéphane Bessy, Binh-Minh Bui-Xuan, Bruno Courcelle,

Jean Daligault, Frederic Dorn, Michael R. Fellows, Henning Fernau, Stephen Finbow, Martin

Fürer, Petr Golovach, Fabrizio Grandoni, Sylvain Guillemot, Mamadou M. Kanté, Shiva P. Ka-

siviswanathan, Marcos Kiwi, William F. Klostermeyer, Jan Kratochv́ıl, Alexander S. Kulikov,

Konstantin Kutzkov, Mathieu Liedloff, Daniel Lokshtanov, Elena Losievskaja, Benôıt Martin,

Daniel Meister, Margaret-Ellen Messinger, Rodica Mihai, Matthias Mnich, Jesper Nederlof,

Richard J. Nowakowski, Paul Ottaway, Christophe Paul, Anthony Perez, Pawe l Pra lat, Artem

V. Pyatkin, Daniel Raible, Michaël Rao, Ivan Rapaport, Igor Razgon, Frances A. Rosamond,

Peter Rossmanith, Saket Saurabh, Alexander D. Scott, Gregory B. Sorkin, Maya J. Stein,

Alexey A. Stepanov, Karol Suchan, Jan Arne Telle, Stéphan Thomassé, Ioan Todinca, Yngve

Villanger, Magnus Wahlström, David Wolfe, David R. Wood, Paul Yans, and Norbert Zeh.

For financial support, I would like to thank the Norwegian Research Council (NFR), the

French National Research Agency (ANR), the L. Meltzers Høyskolefond, the Center for Mathe-

matical Modeling, and the Universities of Bergen (Norway), Montpellier 2 (France), and Chile.

On the personal side, I would like to thank my friends and my family, and especially my

parents Esther and Guy, my brother Sven, and my grandmother Mathilde, who sadly died in

the beginning of 2008 and to whom I dedicate this thesis. For all her love, support and great

company I would like to thank my girlfriend Nancy — I love you.

Fir méng Bomi.

6

Contents

List of Figures 11

List of Tables 13

1 Introduction 15

1.1 Negative Results . 18

1.2 Overview of Techniques . 19

1.3 On Space and on Time . 26

1.4 Outline of the Book . 28

2 Branching Algorithms 31

2.1 Simple Analysis . 33

2.2 Lower Bounds on the Running Time of an Algorithm 35

2.3 Measure Based Analysis . 36

2.4 Optimizing the Measure . 40

2.5 Search Trees . 42

2.6 Branching Numbers and their Properties . 43

2.7 Exponential Time Subroutines . 44

2.8 Towards a Tighter Analysis . 45

2.9 Conclusion . 49

3 Feedback Vertex Sets 51

3.1 Motivation and Related Work . 51

3.2 Discussion of Results . 52

3.3 Preliminaries . 52

3.4 Computing a Minimum Feedback Vertex Set . 55

3.5 On the Number of Minimal Feedback Vertex Sets 58

3.6 Conclusion . 62

4 On Bicliques in Graphs 65

4.1 Introduction . 65

4.2 Polynomial Time Reductions . 66

8 CONTENTS

4.3 Combinatorial Bound for the Number of Maximal Bicliques 68

4.4 Counting Algorithms . 68

4.5 Conclusion . 83

5 Max 2-Sat, Max 2-CSP, and everything in between 85

5.1 Introduction . 85

5.2 Definitions . 88

5.3 Algorithm and Outline of Analysis . 89

5.4 Some Initial Constraints . 95

5.5 Simplification Rules and their Weight Constraints 96

5.6 Some Useful Tools . 102

5.7 Branching Reductions and Preference Order . 107

5.8 Cubic Instances . 108

5.9 Instances of Degree 4 . 113

5.10 Instances of Degree 5 . 117

5.11 Instances of Degree 6 . 120

5.12 Mathematical Program in AMPL . 121

5.13 Tuning the Bounds . 127

5.14 Conclusion . 127

6 Treewidth Bounds 129

6.1 Bounds on the Pathwidth of Sparse Graphs . 130

6.2 Bound on the Treewidth of Circle Graphs . 134

6.3 Conclusion . 141

7 Domination on Graph Classes 143

7.1 Related Work . 143

7.2 Results . 144

7.3 General Framework . 145

7.4 Dense Graphs . 148

7.5 Other Graph Classes . 150

7.6 Conclusion . 152

8 Enumeration and Pathwidth 153

8.1 Considered Problems . 153

8.2 Our Results . 154

8.3 Framework Combining Enumeration and Pathwidth 155

8.4 Applications . 159

8.5 Conclusion . 162

9 Iterative Compression and Exact Algorithms 163

9.1 Background . 163

9.2 Maximum Independent Set . 164

CONTENTS 9

9.3 #d-Hitting Set . 166

9.4 Maximum Induced Cluster Subgraph . 171

9.5 Conclusion . 175

10 Conclusion 177

Glossary 179

Problem Definitions 183

Bibliography 187

Index 207

10 CONTENTS

List of Figures

1.1 Illustration of the main phase of Liedloff’s algorithm for Dominating Set in

bipartite graphs . 22

2.1 Algorithm mis(G), computing the size of a maximum independent set of any

input graph G . 32

2.2 Graph P 2
n used to lower bound the running time of Algorithm mis 36

2.3 Additional simplification rule for Algorithm mis 36

2.4 Mathematical program in AMPL modeling the constraints for the analysis of

Algorithm mis . 41

2.5 Illustration of a search tree . 43

2.6 First levels of the search tree for the execution of Algorithm mis on the instance

P 2
n . 43

2.7 Modified branching rule for Algorithm mis . 46

2.8 Algorithm mis2(G), computing the size of a maximum independent set of any

input graph G . 48

2.9 A state graph for the analysis of Algorithm mis2 49

3.1 Generating graph C5 � P2 used to lower bound the number of maximal induced

forests in a graph . 62

4.1 Algorithm #MaximalIS counting all maximal independent sets 70

4.2 Graph Gl used to lower bound the running time of Algorithm #MaximalIS . . . 81

4.3 A part of the search tree of the execution of Algorithm #MaximalIS on the graph

Gl . 82

5.1 Outline of Algorithm max2csp and its analysis 90

5.2 Procedure Simplify . 90

5.3 Illustration of a 3-cut, reduction 5.8.1 . 109

5.4 Illustration for reduction 5.8.2, on a vertex with independent neighbors 109

5.5 Illustration of reduction on a vertex with one edge in its neighborhood, Case 5.8.3 111

5.6 2-cut rule creates a heavy edge . 112

5.7 2-cut rule avoids creating a heavy edge . 112

12 LIST OF FIGURES

5.8 The case p′3 = 2 may lead to just one good degree reduction outside N [u] 115

5.9 The case p′3 = 3 (P ′3 = {v1, v2, v3}) may lead to just two good degree reductions 115

5.10 Plot of we, wh, and (1− p)we + pwh . 128

6.1 A circle model and the corresponding circle graph 134

6.2 Examples of parallel and non parallel sets of chords 135

6.3 Algorithm TriangCircle computing a triangulation of weight at most 4∆(G) of

any circle graph G . 136

6.4 Procedure ScanChord producing a set of scanlines triangulating the polygon

defined by the neighboring scanpoints of a vertex chord 137

6.5 Illustration of ScanChord(S, v = [a, b]) . 137

6.6 Procedure ParaCuts computing a triangulation of weight at most 4∆(G) of the

polygon defined by the scanpoints of the circle model 138

6.7 Illustration of ParaCuts(S) . 138

6.8 Procedure TriangOuter computing a set of scanlines triangulating an outer

polygon where every vertex chord in this polygon crosses its delimiting scanline 139

6.9 Illustration of TriangOuter(S, s̃ = 〈ã, b̃〉) . 139

6.10 Procedure TriangInner computing a set of scanlines triangulating an inner poly-

gon . 140

6.11 Illustration of TriangInner(S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉) 140

6.12 Procedure OuterParaCuts computing a set of scanlines triangulating an outer

polygon where not necessarily every vertex chord in this polygon crosses the

delimiting scanline of the outer polygon . 141

7.1 Algorithm for computing the domination number of any graph belonging to a

hereditary graph class such that a tree decomposition of width at most c ·∆(G)

of every graph G in this graph class can be computed in polynomial time for

some constant c . 147

8.1 Algorithm enumISPw(G, I, C) combining the approach of enumerating inde-

pendent sets and of dynamic programming over a path decomposition of the

graph to solve various problems . 156

8.2 Maple code for obtaining optimal values for the constants α2 to α5 of Algorithm

enumISPw for solving the #3-Coloring problem 160

List of Tables

1.1 Maximum size of n for different running times for a given amount of time under

the assumption that 230 operations can be performed in one second 28

2.1 Positive real roots of cd(x) . 35

2.2 An assignment of the weights for the measure µ(G) =
∑5

i=1 wini for the analysis

of Algorithm mis . 40

2.3 An optimal assignment of the weights for the measure µ(G) =
∑5

i=1wini for the

analysis of Algorithm mis . 42

2.4 An optimal assignment of the weights for the measure µ(G) =
∑5

i=1wini for the

analysis of Algorithm mis modified according to Figure 2.7 46

5.1 A historical overview of algorithms for Max 2-Sat and Max 2-CSP 86

5.2 Values of we, wh and w := pwh + (1− p)we according to the fraction p of heavy

edges and the maximum degree ∆ of a formula F 94

6.1 Bounds on the pathwidth of sparse graphs according to the number of vertices

of each degree . 133

7.1 Running time of our algorithms for Minimum Dominating Set on some graph

classes . 144

7.2 Running time of the algorithm in Corollary 7.5 for some values of c 147

9.1 Running times of the algorithms for #Minimum d-Hitting Set and Minimum

d-Hitting Set . 171

9.2 Running times of the best known algorithms solving (k, d)-Hitting Set for

various values of d. The algorithms for 4 ≤ d ≤ 5 are based on Corollary 9.10. . 172

14 LIST OF TABLES

Chapter 1
Introduction

One does not fear the perebor1 but rather uses
it reasonably via a realistic estimation of the
dimensions of the disaster it may imply.

Adel’son-Vel’skii et al. [AVAD76]
(translated by Trakhtenbrot [Tra84])

“Eureka - You Shrink!” shouted out 28-year old Jack Edmonds in 1963 when he discovered

new insights into the Matching problem, says a legend.2 These insights were fundamental

for his polynomial time Matching algorithm. In the paper [Edm65] presenting this algorithm

he distinguished good algorithms from bad algorithms, that is those requiring only polynomial

computation time in the length of the input from those that are subject to the ‘curse of exponen-

tiality’. Before, researchers were mainly distinguishing between finite and infinite computation

— no wonder, because one of the only so far implemented algorithms for combinatorial opti-

mization problems was the Simplex algorithm which has worst case exponential running time,

but performed well in practice nevertheless.

As computing devices became more popular, more and more people experienced that good

algorithms were indeed fast and that exponential time algorithms were slow on large inputs.

By the end of the ’60s it became ever more clear that there were problems resisting good

algorithms to solve them. This led Stephen A. Cook to define the class NP , of problems for

which a solution (a certificate) can be checked in time polynomial in the instance size. It is

clear that the class P , of problems that can be solved in polynomial time, is a subset of NP ,

but whether or not it is a proper subset of NP is not known until today. The famous P
vs. NP question is nowadays one of the most important open questions in science. In his

influential paper [Coo71] introducing the class NP , Cook also proves that the Sat problem

belongs to the class of NP–complete problems, the subset of the hardest problems in NP . A

polynomial time solution to one NP–complete problem would imply that P = NP . Leonid A.

1Russian for “brute force” or “exhaustive search”, but more accurately refers here to any exponen-
tial time search procedure

2Edmonds confirmed this at the Aussois 2001 workshop [JRR03], except that instead of ‘Eureka’,
it maybe was some less dignified word

16 Introduction

Levin established the same result independently [Lev73]. In the year following the publication

of Cook’s NP–completeness theorem, Richard M. Karp [Kar72] proposed a general method for

proving the NP–completeness of other problems by reductions to problems already known to

be NP–complete, and proves NP–completeness for another 21 well known problems. At the

end of the ’70s, Garey and Johnson [GJ79] published the first book on NP–completeness which

still serves as a reference to many researchers. Besides presenting NP–completeness results for

many problems, the book also raises the question of how to cope with intractable problems.

As defined above, many problems, like Maximum Independent Set3, are not in NP
unless P = NP . Given a graph G and an independent set of G, it cannot be checked in

polynomial time whether this is a maximum independent set for G unless P = NP . The crux

is here that the class NP has been designed for decision problems, such as the following: given

a graph G and a constant k, does G admit an independent set of size at least k? This problem

can be shown to be NP–complete [Kar72]. For optimization versions of the problems one

usually speaks of NP–hard problems if the corresponding decision version is NP–complete.

More formally, a problem P1 is NP–hard if an algorithm (or oracle) solving P1 in polynomial

time makes it possible to solve an NP–complete problem P2 in polynomial time, that is P2 can

be reduced to P1 in polynomial time. Other kinds of problems often considered are counting

problems, where one is asked to count all objects respecting certain criteria, and enumeration

problems where one is asked to list all objects respecting certain criteria. Several complexity

classes were introduced to capture the hardness of these problems: NPO for optimization

problems [ACG+99], #P for counting problems [Val79], and ENP and several subclasses for

enumeration problems [Fuk96].

Various methods have, since the history ofNP–completeness, been studied to confrontNP–

hard problems, such as heuristics, approximation algorithms, randomized algorithms, average

case complexity, fixed parameter tractability, the restriction of the problems instances to classes

of polynomial time solvable instances, hybrid algorithms (see [VWW06]), or the design of

exponential time algorithms for moderate instance sizes.

This book is about one such strategy to deal with NP–hard problems, namely exponential

time algorithms. In this area of algorithm research, we try to design algorithms that solve hard

problems exactly4 and whose worst case running time is dominated by a “small”5 exponential

function of the input size. The main point is that a reasonable amount of exponentiality is the

price we have to pay to obtain exact solutions to combinatorial hard problems, unless P = NP .

In the literature, many games and puzzles (or variants of them) have been shown to be

NP–complete, such as FreeCell, Mahjong, Mastermind, Minesweeper, Sudoku and Tetris; see

[KPS08] for a recent survey. Nevertheless, they are routinely solved by humans and experienced

players even crack the hardest instances in a reasonable amount of time. Even if there is no

known polynomial time algorithm for these games and puzzles, humans can still solve them if

3words and symbols displayed in dark gray are defined in the glossary on page 179 or in the problem
definition list on page 183

4in contrast to heuristics or approximation algorithms
5here, small is relative to the considered problem; for some problems, a running time of the form

O(cn) for any constant c would be a great achievement, and for other problems running times of, say
O(1.4n), are easily obtained

17

the instances are not too large. The same is true for computer programs: on moderately sized

instances, even exponential time algorithms perform fast.

As customary, for input instances that are graphs, formulas or sets, we denote by n the

number of vertices, variables or elements of the input and by m the number of edges, clauses

or sets of the input. Unless specified in the problem definition list on page 183 or otherwise,

we denote by n the length of the input for all other types of input instances. As we are mainly

interested in the exponential part of the running time of algorithms, let us also use a modified

“big-Oh” notation that suppresses polynomially bounded terms. For an exponential function f ,

O∗(f(n)) := f(n) · nO(1).

In the above definition and in the remainder of this text, we follow the commonly used con-

vention that a function g(n) containing a big-Oh term O(h(n)) is the union of all O(g′(n))

such that g′(n) can be obtained from g(n) by substituting O(h(n)) with a function belonging

to O(h(n)). We also write f(n) = O(g(n)) when we actually mean f(n) ∈ O(g(n)).

Quite early, researchers in theoretical computer science realized that some NP–hard prob-

lems can be solved provably faster than with a trivial brute–force search through the space of

all candidate solutions. Early examples of exponential time algorithms include

• an O∗(2n) algorithm for the Traveling Salesman problem by Held and Karp [HK62],

which is still the fastest known algorithm for this problem,

• anO∗(2n/2) algorithm for the Binary Knapsack problem by Horowitz and Sahni [HS74],

• an O(2.4423n) algorithm for the Chromatic Number problem and a O(1.4423n) algo-

rithm for the 3-Coloring problem by Lawler [Law76],

• an O(1.2599n) algorithm for the Maximum Independent Set problem by Tarjan and

Trojanowski [TT77],

• an O∗(2n/2) algorithm for Binary Knapsack and other problems by Schroeppel and

Shamir [SS81], which uses less space (O∗(2n/4)) than the one by Horowitz and Sahni,

• an O∗(2n) polynomial space algorithm for the Hamiltonian Path problem by Karp

[Kar82]

• an O(1.6181n) algorithm for the 3-Sat problem by Monien and Speckenmeyer [MS85],

and

• O(1.2346n) and O(1.2109n) algorithms for the Maximum Independent Set problem

by Jian [Jia86] and Robson [Rob86]

Only scattered results (for example [ST90, GSB95, BE95, Zha96, Kul99, Bei99]) in the

area of exponential time algorithms appeared in the literature in the ’90s. Probably due to a

DIMACS Workshop on “Faster Exact Solutions for NP Hard Problems” in the year 2000 and a

seminal survey on exponential time algorithms by Woeginger [Woe03], the area of exponential

18 Introduction

time algorithms gained more and more interest in the theoretical computer science community.

Many PhD theses [Bys04b, Gra04, Ang05, Rie06, Bjö07, Dor07, Lie07, Wah07, Wil07, Gas08,

Ste08] have been completely or partly devoted to the topic of exponential time algorithms and

several surveys [DHIV01, Woe03, Iwa04, Woe04, FGK05, Sch05, Woe08] on exponential time

algorithms have appeared since then.

In the next section we survey some negative results that show limits of what we can rea-

sonably hope to achieve in terms of running times of algorithms for NP–hard problems. In

Section 1.2 we give an overview of some important techniques used to design exponential time

algorithms. Section 1.3 is a rather informal discussion on time and space complexities of algo-

rithms. Finally, Section 1.4 gives an overview of the remaining chapters.

1.1 Negative Results

In this section, a few negative results are given. Some of these motivate the study of exponential

time algorithms, others give reasonable limits of what can be achieved by exponential time

algorithms.

Unless P = NP , there exists no polynomial time algorithm for NP–hard problems. More-

over it is now widely believed that P 6= NP [Gas02], which means that superpolynomial time

algorithms are the best we can hope to achieve to solve NP–hard problems.

Note that P 6= NP would not imply that there exists no subexponential time algorithm for

some hard problems. Here, subexponential time means time 2o(n). In his thesis, Dorn [Dor07]

studies several problems for which he exhibits subexponential time algorithms. These problems

are often restricted to planar graphs, graphs with bounded genus or graphs excluding other

graphs as minors. However, it is widely believed (see [Woe03]) that many NP–hard problems

are not solvable in subexponential time. More precisely, the Exponential Time Hypothesis, by

Impagliazzo and Paturi [IP99], states the following.

Conjecture (Exponential Time Hypothesis [IP99]). There is no subexponential time algorithm

for 3-Sat.

By reductions preserving subexponential time complexities, Impagliazzo et al. [IPZ01]

proved that under the Exponential Time Hypothesis, several other problems, like 3-Coloring,

Hamiltonian Cycle and Maximum Independent Set do not have a subexponential time

algorithm either. Johnson and Szegedy [JS99] even strengthen the result for Maximum In-

dependent Set showing that the problem does not admit a subexponential time algorithm

under the Exponential Time Hypothesis when restricted to graphs of maximum degree 3. For

a number of other problems, it has been proved that they do not have subexponential time

algorithms unless the Exponential Time Hypothesis fails.

Further, Pudlák and Impagliazzo [PI00] prove that for every k ≥ 3 there exists a constant

ck > 0, where ck → 0 as k → ∞, such that every DLL algorithm for k-Sat has running time

Ω(2n·(1−ck)). Here, a DLL algorithm is an algorithm that selects a variable v at each step,

and recursively solves subproblems where v is set to true and false respectively, unless some

clause is falsified, in which case it stops. Similarly, Traxler [Tra08] gives some evidence that no

1.2 Overview of Techniques 19

O(cn) algorithm exists for (d, 2)-CSP, namely that under the Exponential Time Hypothesis,

any algorithm for (d, 2)-CSP has running time Ω(dc·n) for some constant c > 0 independent of

d.

Finally, showing the limits of approximation algorithms, many NP–hard problems have

been proved to be hard to approximate in polynomial time. For example, it is NP–hard to

approximate Maximum Independent Set within a factor of n1−ε for any ε > 0 [Zuc07].

1.2 Overview of Techniques

In this section, we describe some of the known techniques for designing and analyzing exponen-

tial time algorithms and give examples for some of the techniques. We focus on deterministic

algorithms here.

1.2.1 Brute Force

Every problem in NP can be solved by exhaustive search over all candidate solutions. The

search space, that is the set of all candidate solutions, has size

• O(2n) for subset problems,

• Bn = O(cn logn) for a constant c > 1 for partitioning problems where Bn denotes the nth

Bell number, and

• O(n!) for permutation problems,

where the ground set has size n. As for every problem in NP , a candidate solution can be

checked in polynomial time, the running time of a brute force algorithm is within a polynomial

factor of the size of the search space.

Whereas for many hard problems, better running time bounds have been achieved,

• for subset problems like Sat6, Minimum Hitting Set, and Minimum Set Cover, no

algorithm of time complexity O(1.9999n) is known,

• for partitioning problems like CSP and Graph Homomorphism no known algorithm

has time complexity O(cn) for a constant c, and

• for permutation problems like Quadratic Assignment and Subgraph Isomorphism,

no known algorithm has time complexity O(cn) for a constant c.

6The currently fastest deterministic algorithm for Sat is due to Dantsin et al. [DHW06] and has

running time O∗
(

2
n·
“

1− 1
ln(m/n)+O(ln lnm)

”)
.

20 Introduction

1.2.2 Bounds on Mathematical Objects

A very natural question in graph theory is: how many minimal (maximal) vertex subsets

satisfying a given property can be contained in a graph on n vertices? The trivial bound

is O
((

n
n/2

))
, which is O(2n/

√
n) by Stirling’s approximation. Only for few problems better

bounds, that is bounds of the form O(cn) for c < 2, are known. One example of such a bound

is the celebrated Moon and Moser [MM65] theorem, basically stating that every graph on n

vertices has at most 3n/3 maximal cliques (independent sets). Another example is the result

from [FGPS08], where it is shown that the number of minimal dominating sets is at most

1.7170n.

Besides their combinatorial interest, such bounds often have algorithmic consequences.

Worst–case upper bounds on the (total) running time of enumeration algorithms can be proved

using these bounds. For example, the Moon and Moser theorem implies an overall running

time of O∗(3n/3) = O(1.4423n) for the polynomial delay algorithm of Johnson et al. [JYP88]

for enumerating all maximal independent sets of a graph on n vertices.

More indirect consequences are worst case upper bounds on the running time of algorithms

using an enumeration algorithm as a subroutine, such as many Coloring algorithms [Law76,

Epp03, Bys04a, Bys04b, BH08] or algorithms for other problems that enumerate maximal

independent sets [RSS07].

The simplest such example is probably Lawler’s algorithm [Law76] for theNP–hard problem

to decide whether a graph G is 3-colorable. The algorithm works as follows: for each maximal

independent set I of G, check if G \ I is bipartite. If for at least one maximal independent set

I, G \ I is bipartite then G can be colored with 3 colors. As deciding if a graph is bipartite is

polynomial time solvable, the algorithm has time complexity O∗(3n/3).

Upper bounds of O(1.6181n) for the number of minimal separators and O(1.7347n) for the

number of potential maximal cliques in a graph have been proved and used by Fomin and

Villanger [FV08, FV10] to design the currently fastest algorithms for the Treewidth and

the Feedback Vertex Set problem, amongst others. In [Moo71, GM09], the number of

minimal feedback vertex sets in tournaments has been studied. Other results include bounds

on the number of maximal induced r-regular subgraphs [GRS06] and on the number of maximal

induced bipartite graphs [BMS05].

In Chapter 3, an upper bound of 1.8638n on the number of minimal feedback vertex sets

is presented and in Chapter 4 we show an upper bound of n · 3n/3 on the number of maximal

bicliques, which is tight up to a linear factor.

1.2.3 Dynamic Programming Across Subsets

The idea of this technique is to store, for each subset of a ground set on n elements (and often

some additional information), a partial solution to the problem in an exponential size table so

that the partial solutions can be looked up quickly. Dynamic programming across subsets can

be used whenever a solution to an instance can be extended in polynomial time based on the

solutions to all subinstances no matter how the solutions to the subinstances were obtained.

Consider the Traveling Salesman problem.

1.2 Overview of Techniques 21

Traveling Salesman: Given a set {1, . . . , n} of n cities and the distance d(i, j) between

every two cities i and j, find a tour visiting all cities with minimum total distance. A

tour is a permutation of the cities starting and ending in city 1.

The O∗(2n) algorithm for the Traveling Salesman problem by Held and Karp [HK62]

works as follows. For a subset S ⊆ {2, . . . , n} of cities and a city i ∈ S, let Opt[S, i] denote the

length of the shortest path starting in city 1, visiting all cities in S \ {i} and ending in city i.

Then,

Opt[S, i] :=

{
d(1, i) if S = {i}, and

minj∈S\{i}{Opt[S \ {i}, j] + d(i, j)} otherwise.

It is then straightforward to compute Opt[S, i] for each S ⊆ {2, . . . , n} and i ∈ S by going

through the subsets in increasing order of cardinality. The time spent to compute the entry

for one couple (S, i) is polynomial by looking up the values Opt[S \ {i}, j] for each j ∈ S \ {i}.
The final solution to the problem is then minj∈{2,...,n}{Opt[{2, . . . , n}, j] + d(j, 1)}. Despite its

simplicity, this algorithm is still the fastest known for the Traveling Salesman problem.

For a variant of the Traveling Salesman problem where the instance is given by a

graph G with maximum degree d = O(1) where the vertices represent cities and weighted

edges represent the distance between these cities, Björklund et al. [BHKK08b] use a slight

modification of the former algorithm to solve this variant in time O((2 − εd)n) where εd > 0

depends on d alone. Dynamic Programming has also been used to derive the O(2.4423n)

algorithm for the Coloring problem by Lawler [Law76], which was the fastest known algorithm

for this problem for 25 years.

1.2.4 Branching

A branching algorithm selects at each step a local configuration of the instance and recursively

solves subinstances based on all possible values this local configuration can take. This technique

is presented in detail in Chapter 2 and is at the heart of many of the fastest known algorithms

for various hard problems.

1.2.5 Memorization

Memorization was introduced by Robson [Rob86] as a trade-off between time and space usage.

The idea is to precompute the solutions to subinstances of small size, say of size at most

αn, α < 1, by Dynamic Programming and to look them up whenever a branching algorithm

encounters a subinstance of size at most αn, thereby reducing its running time. Alternatively,

the solutions to small subinstances can also be computed on the fly by the branching algorithm

and looked up whenever a solution to the subproblem has already been computed. We refer to

[Rob86, Gra04, FGK05] for more details on the technique.

22 Introduction

A B

N(X) ∩B
X

N(X) ∩ A

N(B \N(X))

Figure 1.1: Illustration of the main phase of Liedloff’s algorithm for Dominating Set in
bipartite graphs

1.2.6 Preprocessing

The idea of this approach is to first perform an initial analysis or restructuring of the given input

such that later on, queries to the precomputed values can be answered quickly. Preprocessing

an exponentially large data set may lead to an exponential speedup in the running time of

the algorithm. As an example, consider the following outline of Liedloff’s algorithm [Lie08] for

finding a minimum dominating set in a bipartite graph G = (A,B,E) in time O∗(2n/2).

Let B = {b1, . . . , b|B|} be the largest of the two sets A and B. The algorithm performs two

phases, each having running time 2|A| · nO(1).

In the preprocessing phase, compute for each subset X ⊆ A and integer k, 1 ≤ k ≤ |B|, a

subset Opt[X, k] which is a smallest subset of {b1, . . . , bk} that dominates X. This phase can

be performed by Dynamic Programming in time 2|A| · nO(1).

In its main phase (see Figure 1.1), the algorithm goes again through all subsets X ⊆ A and for

each set X, it computes a dominating set D of G of minimum size such that D ∩ A = X. For

each set X ⊆ A, such a dominating set D can be obtained by setting

D := X ∪ (B \N(X)) ∪ Opt[A \ (N [X] ∪N(B \N(X))), |B|].

Observe that X ⊆ D by definition, the vertices in B \N(X) must be added to D to dominate

themselves (since B is an independent set), and, additionally, a minimum sized subset of vertices

of B dominating the vertices in A \ (N [X] ∪ N(B \ N(X))) (the only vertices that are not

dominated by X nor B \N(X)) can be looked up in Opt[A \ (N [X]∪N(B \N(X))), |B|]. This

phase of the algorithm also takes time 2|A| · nO(1).

Preprocessing is a fundamental tool in algorithm design. For exponential time algorithms, it

has been applied to Binary Knapsack [HS74, SS81], Exact Hitting Set [DP02], Subset

Sum [Woe03], and several other problems [KW05, FGK+07]. The algorithms of Feige [Fei00]

and Cygan and Pilipczuk [CP08, CP09a] for the Bandwidth problem could also be classified

under Preprocessing algorithms.

1.2 Overview of Techniques 23

1.2.7 Local Search

Local search algorithms explore the search space of candidate solutions by moving from one

candidate solution to the next in a local fashion. This method has mainly be employed to

design algorithms for k-Sat; see [Sch01] for an overview of local search algorithms.

Consider the 3-Sat problem. The space of candidate solutions is {0, 1}n, that is all possible

truth assignments for the n variables of a logical formula in conjunctive normal form. For a

truth assignment t ∈ {0, 1}n and a distance d, let H(t, d) denote the Hamming Ball of radius d

around t, that is the set of all truth assignments with Hamming distance at most d from t.

An O∗(3d) algorithm to check whether there exists a satisfying assignment in H(t, d) can

easily be obtained as follows. As long as the current assignment is not a satisfying assignment,

choose an unsatisfied clause, and go over all (at most 3) possibilities to flip the truth assignment

of a variable in this clause and recurse with the new truth assignment and d− 1.

Using a simple, so–called covering–code, of only the two Hamming balls H({0}n, bn/2c) and

H({1}n, dn/2e), the whole search space is clearly covered. Applying the local search algorithm

of the previous paragraph to both Hamming balls, it is easy to solve 3-Sat in time O∗(3n/2) =

O(1.7321n). More involved choices for the covering–codes and a slightly faster local search

procedure inside the Hamming balls have led to the currently fastest deterministic algorithms

for 3-Sat [DGH+02, BK04, Sch08].

1.2.8 Split and List

The Split and List method, which is quite similar to a preprocessing technique used in [HS74]

and [SS81], is described and used by Williams [Wil05] to obtain an O∗(2ωn/3) algorithm for

Max 2-CSP, where ω < 2.376 is the matrix multiplication exponent. The basic idea is to

split the variables into k ≥ 3 equal sized parts, list all assignments of the variables in each

of the parts, and finally combine all the solutions with a polynomial time algorithm on an

exponentially large instance.

A Split and List algorithm for the Max Cut problem works as follows [Wil05]. Divide the

vertices of the graph G = (V,E) in three parts P0, P1, P2 of size roughly n/3 each. Build a

complete 3-partite auxiliary graph containing a vertex for each subset of P0, P1 and P2. Given

vertices xi and xj, i ∈ {0, 1, 2}, j = i + 1(mod3), that correspond to subsets Xi, Xj of Pi, Pj
respectively, set the weight w(xixj) of the edge xixj to be the number of edges between Xi∪Xj

and Pi \Xi plus the number of edges between Xi and Pj \Xj, that is

w(xixj) := |N(Xi) ∩ Pi|+ |N(Xj) ∩ (Pi \Xi)|+ |N(Xi) ∩ (Pj \Xj)|.

Then the weight of a triangle x1x2x3 in the auxiliary graph corresponds to the number of edges

that cross the partition of vertices (Vl, V \Vl) where Vl = X1∪X2∪X3. To determine ifG contains

a cut with k edges, go over all O(m3) possible triples (k01, k12, k20) such that k = k01 +k12 +k20,

keep only those edges xixj in the auxiliary graph that have w(xixj) = kij, and find a triangle

in the auxiliary graph on O(2n/3) vertices in time O∗(2ωn/3). As the auxiliary graph can be

computed in time O∗(22n/3), the total running time of the algorithm is O∗(2ωn/3) = O(1.7315n).

24 Introduction

1.2.9 Partitioning Based Algorithms

Whereas the previous technique reduced an instance to an exponentially large instance of a

problem solvable in polynomial time, this technique reduces an instance to an exponential

number of simpler problems. Angelsmark et al. [AJ03, AT06, Ang05] designed several algo-

rithms according to the slogan

Solving an exponential number of small instances can be faster than solving a single

large one.

For problems with domain size d, like (d, l)-CSP or d-Coloring, split the domain of each

variable in different parts of given sizes in each possible way and solve all the corresponding

subinstances using algorithms for smaller domains. Algorithms for k-Coloring, counting

versions of (d, 2)-CSP and a variety of related problems have been obtained by this method;

see the PhD thesis of Angelmark [Ang05] for details.

1.2.10 Treewidth

Many NP–hard graph problems can be solved in polynomial, or even linear time, when the

input graph has constant treewidth.7 Moreover, given a tree decomposition of width ` of a

graph G, many treewidth based dynamic programming algorithms have a running time of the

form c` · nO(1) for some constant c > 1 [ABF+02]. As the treewidth of any planar graph is

at most O(
√
n), subexponential 2O(

√
n) time algorithms are easily obtained for planar graphs.

Similarly, bounds on the treewidth for sparse graphs lead directly to fast exponential time

algorithms for sparse graphs. We refer to the survey by Fomin et al. [FGK05] for more details

on direct implications of treewidth bounds. In Chapters 6, 7 and 8 we present several bounds

on the treewidth of graphs and use these bounds in algorithms that combine branching and

dynamic programming over tree decompositions.

1.2.11 Inclusion–Exclusion

The principle of Inclusion–Exclusion is a well known counting principle used to determine the

cardinality of a union of overlapping sets. Namely if V1, V2, . . . , Vm are finite sets, then

∣∣∣∣∣
m⋃
i=1

Vi

∣∣∣∣∣ =
m∑
i=1

|Vi| −
∑

1≤i<j≤m

|Vi ∩ Vj|+
∑

1≤i<j<k≤m

|Vi ∩ Vj ∩ Vk| − · · ·+ (−1)m−1

∣∣∣∣∣
m⋂
i=1

Vi

∣∣∣∣∣ .
To our knowledge, the Inclusion–Exclusion principle was first used by Karp [Kar82] to de-

sign exponential time algorithms. An astonishing result using this principle was achieved by

Björklund et al. [BHK09] for Coloring and other partitioning problems.

7The notion of treewidth is defined and discussed more extensively in Chapter 6. For the moment
it is sufficient to know that it is a graph parameter measuring how tree-like a graph is.

1.2 Overview of Techniques 25

Let us describe an O∗(2n) algorithm for Coloring due to Björklund et al. [BHK09]. First,

we prove that a graph G = (V,E) is k-colorable if and only if ck(G) > 0, where

ck(G) :=
∑
X⊆V

(−1)|X|s(X)k

and s(X) is the number of non–empty independent sets in G not intersecting X. We will show

that ck(G) is precisely the number of ways to cover V with k (possibly overlapping) non–empty

independent sets. Note that s(X)k is the number of ways to choose, with repetition, k non–

empty independent sets not intersecting X. A set C of k non–empty independent sets covering

V is counted only in the term (−1)0s(∅), whereas a set C̄ of k non–empty independent sets not

covering V avoids some set of vertices U . Hence, C̄ is counted once in every s(W) for every

W ⊆ U . As every non–empty set has as many even– as odd–sized subsets, the positive and

negative counts of C̄ sum up to 0. This shows that G is k-colorable if and only if ck(G) > 0.

The values s(X) can then be computed by dynamic programming in time O∗(2n). Let us

instead compute s(X), which denotes the number of non–empty independent sets in G[X]. It is

clear that s(X) = s(V \X) for every X ⊆ V . By increasing cardinality of the sets X, compute

s(X) using the formula

s(X) :=

{
0, if X = ∅, and

s(X \ v) + s(X \N [v]) + 1 for some v ∈ X, otherwise.

For the base case, it is clear that the number of non–empty independent sets in an empty graph

is 0. Otherwise, each non–empty independent set counted in s(X) either does not contain v

and is counted in s(X \ v), or contains v and is counted in s(X \N [v]) + 1 where the term +1

accounts for the singleton {v}.
Now, ck(G) can easily be computed. To obtain the least k for which ck(G) > 0, binary

search may be used to solve Coloring in time O∗(2n).

This technique has been further used and extended, for example to Subset Convolution

via Möbius transform and inversion by Björklund et al. [BHKK07, BHKK08b, BHKK08c,

BHKK08a] and to a kind of Inclusion–Exclusion branching by Nederlof, van Dijk, and van

Rooij [Ned09, vRNvD09].

1.2.12 Parameterized Complexity and Parameter Bounded Subrou-

tines

Parameterized Complexity [DF99, FG06, Nie06] is probably the area that is closest to expo-

nential time algorithms. Here, one asks if given a problem and a parameter k, the problem

can be solved in time f(k) · nO(1) where f(·) is an arbitrary computable function. One of the

basic examples in Parameterized Complexity is the Minimum Vertex Cover problem with k

being the cardinality of the vertex cover one is asked to find. The fastest (in terms of the func-

tion f(k)) known parameterized algorithm for this problem has running time O(1.2738k + kn)

[CKX06]. It is natural to use these algorithms as subroutines for exponential time algorithms

26 Introduction

in case a good bound on the parameter is known, as done for example in [Wah04, Wah07] for

solving Minimum 3-Hitting Set and in [RSS05] for a variety of other problems.

On the negative side, for many problem/parameter combinations, it is unlikely that fixed

parameter algorithms exist. When they introduced Parameterized Complexity in 1992, Downey

and Fellows [DF92] defined the complexity classes

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P].

Problem/parameter combinations in FPT are fixed parameter tractable, that is, there exist

algorithms with running times of the form f(k) · nO(1) for them. For problem/parameter com-

binations that are complete for one of the other classes, like Maximum Independent Set

(where k is the size of the independent set) which is complete forW [1] or Minimum Dominat-

ing Set (where k is the size of the dominating set) which is complete for W [2], no algorithms

with running times of the form f(k) · nO(1) are known, and it is strongly believed that none

of these problems is in FPT . Nevertheless, even algorithms with running time O(nk) could

be of interest for exponential time algorithms. For example, the notoriously hard Bandwidth

problem, which is hard for every level of the W [·] hierarchy even for trees [BFH94], not ap-

proximable in polynomial time within any constant [Ung98], and for which the fastest known

exponential time algorithm has running time O∗(4.473n) [CP09b], can be solved in time O∗(2n)

if the bandwidth is at most n/ log n by an O(nk+1) algorithm of Saxe [Sax80].

1.2.13 Iterative Compression

Introduced in the area of Parameterized Complexity, this technique will be presented in detail

in Chapter 9 and used to obtain faster algorithms for variants of the Minimum Hitting Set

problem. For minimization problems, the basic idea is to build an iterative algorithm, and

at each iteration, either compress the solution into a smallest one or prove that the current

solution is optimal.

1.3 On Space and on Time

Several of the techniques presented in the previous section naturally lead to algorithms whose

space complexity is close to their time complexity. A convenient and important theoretical

classification is to distinguish between algorithms needing only polynomial space (in the worst

case) and algorithms with exponential space complexity. Research goes in both directions

here. For problems where fast exponential space algorithms are known, alternative methods

are studied requiring only polynomial space, as in [GS87, FV08] for example. For problems

where fast polynomial space algorithms are known, methods to trade space for time are applied

to improve the running time bounds, as for example in [Rob86, FGK09b].

Whether or not exponential space algorithms are useful in practice is debatable. In one of

his surveys on exponential time algorithms, Woeginger [Woe04] writes:

Note that algorithms with exponential space complexities are absolutely useless

1.3 On Space and on Time 27

for real life applications.

On the other hand, after having implemented exponential space algorithms for Bandwidth,

Cygan and Pilipczuk [CP08] write:

It is worth mentioning that exponential space in our algorithms is no problem

for practical implementations, since in every case space bound is less than square

root of the time bound, thus space will not be a bottleneck in a real life applications,

at least considering today’s proportions of computing speed and fast memory size.

This shows that the community has not yet reached a consensus about what is practical regard-

ing space consumption of the algorithms. Indeed, it seems that exponential time algorithms

that require as much space as time, are impractical from the implementation point of view. But

what about algorithms that require exponential space that is significantly (by a large enough

exponential function) smaller than the running time of the algorithm? A good compromise

seems to be achieved by techniques like Memorization or the techniques developed in Chap-

ters 7 and 8 combining polynomial space branching and exponential space treewidth based

algorithms. Here, the space complexity of the algorithm can be adjusted, by simply tuning a

parameter of the algorithm, to the amount of space that one is willing to use, at the expense

of a slightly higher running time.

Concerning the running time of exponential time algorithms, the question of what is a

‘significant’ improvement in the running time of an algorithm often arises. Consider for example

(a) an improvement of a running time from 2.2n to 2.1n, and (b) an improvement from 1.2n

to 1.1n. At a first glance, both improvements seem comparable. At a second look however,

improvement (b) makes it now possible to solve instances that are log(1.2)/ log(1.1) ' 1.912

times larger than before if both the 1.1n and the 1.2n algorithms are allowed to run for the same

amount of time, whereas improvement (a) makes it now possible to solve instances that are only

log(2.2)/ log(2.1) ' 1.062 times larger. This is actually better seen if we use a 2c·n notation

to express the running time of the algorithms and compare the constant in the exponent:

2.2n = 21.1376n, 2.1n = 21.0704n, 1.2n = 20.2631n, and 1.1n = 20.1376n.

Polynomial factors in the running time are hidden by the O∗ notation. By rounding the

base of the exponent, polynomial factors even disappear in the usual O notation; for example

O(n100 · 1.38765n) = O(1.3877n). For practical implementations, however, care should be

taken about the polynomial factors. Consider, for example, an algorithm A with running time

TA(n) = n · 1.5n and an algorithm B with running time TB(n) = n2 · 1.46n. Algorithm B seems

preferable as, asymptotically, it is exponentially faster than Algorithm A. However, simple

calculations show that for n ≤ 195, Algorithm A is faster; and for n = 195, both algorithms

need to perform a number of operations which exceeds the number of attoseconds8 since the

Big Bang.

Table 1.1 gives an indication on the size of the instances that can be solved in a given

amount of time, assuming that 230 operations can be carried out per second, which roughly

8One attosecond is 10−18 seconds. The shortest time interval ever measured is about 100 attosec-
onds.

28 Introduction

Available time 1 s 1 min 1 hour 3 days > 6 months
number of operations 230 236 242 248 254

n5 64 145 329 774 1756
n10 8 12 18 27 41

1.05n 426 510 594 681 765
1.1n 218 261 304 348 391
1.5n 51 61 71 82 92
2n 30 36 42 48 54
5n 12 15 18 20 23
n! 12 14 15 17 18

Table 1.1: Maximum size of n for different running times for a given amount of time under the
assumption that 230 operations can be performed in one second

corresponds to the computational power of an old Intel Pentium III processor at 500 MHz from

1999. Note that technology is not the predominant factor if we would like to exactly solve

NP–hard problems in practice, but algorithms are. Suppose there is an algorithm to solve

some problem in time 2n and the current implementation has an acceptable running time for

instance sizes up to a constant x. To solve larger instances, we can wait for faster technology

and solve instances of size x + 1 after a period of 18–24 months, according to Moore’s law, or

we can try to find faster algorithms; a 1.7548n algorithm would solve the problem for instances

up to size 1.23 · x. Moreover, for instances of size, say 50, the 1.7548n algorithm performs 692

times faster than the 2n algorithm.

It is also worth noticing that some of the techniques presented in Section 1.2, like dynamic

programming, inherently lead to algorithms that have the same performance on every instance

of a given size n, whereas other techniques, like branching, lead to algorithms that naturally

perform much faster on most inputs than in a worst case scenario. Moreover, for most branching

algorithms, the known lower bounds on their running time are far from the upper bound

and it is very well possible that the worst case running time of most branching algorithms is

overestimated.

1.4 Outline of the Book

The individual chapters of this book are organized as follows.

Chapters 2–5 mainly focus on branching algorithms. A general introduction to branching

algorithms is given in Chapter 2. The main focus of that chapter is the running time analysis

of branching algorithms, presented in a very general way, and providing a solid background

for the following chapters. Chapter 3 presents an O(1.7548n) algorithm for the Feedback

Vertex Set problem, as well as upper bound of 1.8638n and a lower bound of 1.5926n on

the number of minimal feedback vertex sets in a graph. The upper bound on the number of

feedback vertex sets is obtained via the same kind of techniques that are used to upper bound

the running time of the Feedback Vertex Set algorithm, and the lower bound is achieved

by an explicit construction of an infinite family of graphs with a large number minimal feedback

1.4 Outline of the Book 29

vertex sets. In Chapter 4, the focus is on bicliques in graphs. We transform different results

for independent sets to results concerning bicliques and derive a n · 3n/3 upper bound on the

number of maximal bicliques in a graph on n vertices, derive algorithms that can find, count and

enumerate maximal or maximum bicliques in the same time bound (up to polynomial factors)

as the corresponding algorithms for independent sets. For lack of an existing algorithm able to

count all maximal independent sets faster than enumerating all of them, we also provide the

first non trivial algorithm counting all maximal independent sets in a graph. It has running

time O(1.3642n). The last example of a branching algorithm is presented in Chapter 5. Here

we present the currently fastest polynomial space algorithm for Max 2-Sat, Max 2-CSP and

mixed instances of these two problems. A very rigorous analysis allows us to use both Max

2-Sat and Max 2-CSP specific simplification rules and to parameterize the running time by

the fraction of general integer–weighted CSP clauses versus simple unit–weighted conjunctions

and disjunctions to obtain the currently fastest polynomial space algorithm for Max 2-Sat,

Max 2-CSP, and everything in between.

In Chapters 6–8, we present bounds for the treewidth of graphs and two Win–Win strate-

gies combining branching and tree decomposition based algorithms. Treewidth bounds that

are needed in the two following chapters are proved in Chapter 6. In particular, we give upper

bounds for the treewidth in terms of the number of vertices of sparse graphs and in terms of the

maximum degree of circle graphs. In Chapter 7 we derive faster algorithms for the Minimum

Dominating Set problem for graph classes where one can find tree decompositions whose

widths do not exceed the maximum degree of the graph by more than a constant multiplicative

factor. A general framework based on the enumeration of independent sets and tree decom-

position based algorithms for sparse graphs is presented in Chapter 8 and applied to different

problems.

Showing how to carry over to exponential time algorithms a technique that is prominent in

the area of Parameterized Complexity, Chapter 9 presents exponential time algorithms based

on iterative compression for Minimum Hitting Set–like problems.

Finally, Chapter 10 concludes with a short summary, some open problems and possible

further research directions.

30 Introduction

Chapter 2
Branching Algorithms

Nothing is particularly hard if you divide it
into small jobs.

Henry Ford

In this chapter, we present branching algorithms and various ways to analyze their running

times. Unlike for other techniques to design exponential time algorithms (or polynomial time

algorithms), like dynamic programming, it is far less obvious for branching algorithms how to

obtain worst case running time bounds that are (close to) tight. The running time analysis is

a very important and non trivial factor in the design of branching algorithms; the design and

the analysis of branching algorithms usually influence each other strongly and they go hand

in hand. Also, branching algorithms usually perform faster on real life data and randomized

instances than the (upper bound of the) worst case running time derived by the analysis: it is not

uncommon that competitive SAT solvers in competitions like SAT Race and SAT Competition

solve instances with thousands of variables, although no known algorithm for SAT has a proved

(worst case) time complexity of O(1.9999n).

Branching algorithms are recursive algorithms that solve a problem instance by reducing it

to “smaller” instances, solving these recursively, and combining the solutions of the subinstances

to a solution for the original instance.

In the literature they appear with various names, for example Branch-and-Reduce, Branch-

and-Bound, Branch-and-Search, Branching, Pruning the Search Tree, Backtracking, DPLL, or

Splitting algorithms.

Typically, these algorithms

1. select a local configuration of the problem instance (selection),

2. determine the possible values this local configuration can take (inspection),

3. recursively solve subinstances based on these values (recursion), and

4. compute an optimal solution of the instance based on the optimal solutions of the subin-

stances (combination).

32 Branching Algorithms

Algorithm mis(G)
Input : A graph G = (V,E).
Output: The size of a maximum independent set of G.

if ∆(G) ≤ 2 then // G has maximum degree at most 21

return the size of a maximum independent set of G in polynomial time2

else if ∃v ∈ V : d(v) = 1 then // v has degree 13

return 1 + mis(G \N [v])4

else if G is not connected then5

Let G1 be a connected component of G6

return mis(G1) + mis(G \ V (G1))7

else8

Select v ∈ V such that d(v) = ∆(G) // v has maximum degree9

return max (1 + mis(G \N [v]),mis(G \ v))10

Figure 2.1: Algorithm mis(G), computing the size of a maximum independent set of any
input graph G

We call reduction a transformation (selection, inspection and the creation of the subin-

stances for the recursion) of the initial instance into one or more subinstances. We also call

simplification a reduction to one subinstance, and branching or splitting a reduction to more

than one subinstance.

Usually, the reduction and the combination steps take polynomial time and the reduction

creates a constant number of subinstances (for exceptions, see for example [Ang05]). Polynomial

time procedures to solve a problem for “simple” instances are viewed here as simplification rules,

reducing the instance to the empty instance.

Let us illustrate branching algorithms by a simple algorithm for Maximum Independent

Set. Consider Algorithm mis on this page. It contains two simplification rules. The first one

(lines 1–2) solves Maximum Independent Set for graphs of maximum degree 2 in polynomial

time. Clearly, for a collection of paths and cycles, the size of a maximum independent set can

be computed in polynomial time: a maximum independent set of Pn has size dn/2e and a

maximum independent set of Cn has size bn/2c. The second simplification rule (lines 3–4)

always includes vertices of degree 1 in the considered independent set. Its correction is based

on the following observation.

Observation 2.1. For a vertex v of degree 1, there exists a maximum independent set contain-

ing v.

Proof. Suppose not, then all maximum independent sets of G contain v’s neighbor u. But then

we can select one maximum independent set, replace u by v in this independent set, resulting

in an independent set of the same size and containing v — a contradiction.

By the argument used in the proof of Observation 2.1, the algorithm is not guaranteed to

go through all maximum independent sets of G, but is guaranteed to find at least one of them.

2.1 Simple Analysis 33

The first branching rule (lines 5–7) is invoked whenG has at least two connected components.

Clearly, the size of a maximum independent set of a graph is the sum of the sizes of the maximum

independent sets of its connected components. If V (G1) (or V \ V (G1)) has constant size, this

branching rule may actually be viewed as a simplification rule, as G1 (or G \ V (G1)) is dealt

with in constant time.

The second branching rule (lines 8–10) of the algorithm selects a vertex v of maximum

degree; this vertex corresponds to the local configuration of the problem instance that is selected.

Including or excluding this vertex from the current independent set are the values that this local

configuration can take. The subinstances that are solved recursively are G \N [v] — including

the vertex v in the independent set, which prevents all its neighbors to be included — and G\v
— excluding v from the independent set. Finally, the computation of the maximum in the last

line of the algorithm corresponds to the combination step.

2.1 Simple Analysis

To derive upper bounds for the running time of a branching algorithm, let us describe its

behavior by a model which consists of a set of univariate constraints.

Definition 2.2. Given an algorithm A and an instance I, TA(I) denotes the running time of

A on instance I.

Lemma 2.3. Let A be an algorithm for a problem P , and α > 0, c ≥ 0 be constants such

that for any input instance I, A reduces I to instances I1, . . . , Ik, solves these recursively, and

combines their solutions to solve I, using time O(|I|c) for the reduction and combination steps

(but not the recursive solves),

(∀i : 1 ≤ i ≤ k) |Ii| ≤ |I| − 1, and (2.1)

k∑
i=1

2α·|Ii| ≤ 2α·|I|. (2.2)

Then A solves any instance I in time O(|I|c+1)2α·|I|.

Proof. The result follows easily by induction on |I|. Without loss of generality, we may replace

the hypotheses’ O statements with simple inequalities (substitute a sufficiently large leading

constant, which then appears everywhere and has no relevance), and likewise for the base case

assume that the algorithm returns the solution to an empty instance in time 1 ≤ |I|c+12α·|I|.

Suppose the lemma holds for all instances of size at most |I| − 1 ≥ 0, then

TA(I) ≤ |I|c +
k∑
i=1

TA(Ii) (by definition)

≤ |I|c +
∑
|Ii|c+12α·|Ii| (by the inductive hypothesis)

≤ |I|c + (|I| − 1)c+1
∑

2α·|Ii| (by (2.1))

34 Branching Algorithms

≤ |I|c + (|I| − 1)c+12α·|I| (by (2.2))

≤ |I|c+12α·|I|.

The final equality uses that α · |I| > 0 and holds for any c ≥ 0.

Let us use this lemma to derive a vertex-exponential upper bound of the running time

of Algorithm mis, executed on a graph G = (V,E) on n vertices. For this purpose we set

|G| := |V | = n. We may at all times assume that n is not a constant, otherwise the algorithm

takes constant time.

Determining if G has maximum degree 2 can clearly be done in time O(n). By a simple

depth–first–search, and using a pointer to the first unexplored vertex, the size of a maximum

independent set for graphs of maximum degree 2 can also be computed in time O(n). Checking

if G has more than one connected component can be done in time O(n+m) = O(n2). Finding

a vertex of maximum degree and the creation of the two subinstances takes time O(n + m) =

O(n2). Addition and the computation of the maximum of two numbers takes time O(1).

For the first branching rule, we obtain a set of constraints for each possible size s of V (G1):

(∀s : 1 ≤ s ≤ n− 1) 2α·s + 2α·(n−s) ≤ 2α·n. (2.3)

By convexity of the function 2x, these constraints are always satisfied, irrespective of the value

of α > 0 and can thus be ignored. Here we suppose that n is not a constant, otherwise the

algorithm takes only constant time.

For the second branching rule, we obtain a constraint for each vertex degree d ≥ 3:

(∀d : 3 ≤ d ≤ n− 1) 2α·(n−1) + 2α·(n−1−d) ≤ 2αn. (2.4)

Dividing all these terms by 2αn, the constraints become

2−α + 2α·(−1−d) ≤ 1. (2.5)

Then, by standard techniques [Kul99], the minimum α satisfying all these constraints is ob-

tained by setting x := 2α, computing the unique positive real root of each of the characteristic

polynomials

cd(x) := x−1 + x−1−d − 1,

by Newton’s method, for example, and taking the maximum of these roots. Alternatively, one

could also solve a mathematical program minimizing α subject to the constraints in (2.5) (the

constraint for d = 3 is sufficient as all other constraints are weaker). The maximum of these

roots (see Table 2.1) is obtained for d = 3 and its value is 1.380277 . . . ≈ 20.464958....

Applying Lemma 2.3 with c = 2 and α = 0.464959, we find that the running time of

Algorithm mis is upper bounded by O(n3) · 20.464959·n = O(20.46496·n) = O(1.3803n). Here the

O notation permits to exclude the polynomial factor by rounding the exponential factor.

2.2 Lower Bounds on the Running Time of an Algorithm 35

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

Table 2.1: Positive real roots of cd(x)

2.2 Lower Bounds on the Running Time of an Algorithm

One peculiarity of branching algorithms is that it is usually not possible, by the currently

available running time analysis techniques, to match the derived upper bound of the running

time by a problem instance for which the algorithm really takes this much time to compute a

solution. Exceptions are brute-force branching algorithms that go through all the search space

or algorithms enumerating objects for which tight bounds on their number are known, like the

enumeration of maximal independent sets [MM65] or maximal induced bicliques [GKL08].

Lower bounds on the running time of a specific algorithm are helpful as they might give

indications which instances are hard to solve by the algorithm, an information that might

suggest attempts to improve the algorithm. Moreover, the design (or its attempt) of lower

bound instances might give indications on which “bad” structures do not exist in an instance

unless some other “good” structures arise during the execution of the algorithm, which might

hint at the possibility of a better running time analysis. Finally, it is desirable to sandwich the

true worst case running time of the algorithm between an upper and a lower bound to obtain

more knowledge on it as a part of the analysis of the algorithm.

Lower bounds are usually obtained by describing an infinite family of graphs for which the

behavior of the algorithm is “cyclic”, that is it branches on a finite number of structures in the

instance in a periodic way.

To derive a lower bound of the running time of Algorithm mis, consider the graph G = P 2
n ,

depicted in Figure 2.2 — the second power of a path on n vertices, obtained from a path Pn on

n vertices by adding edges between every two vertices at distance at most two in Pn. Suppose

n ≥ 9, then none of the simplification rules applies to G. The algorithm selects some vertex

of degree 4; here, we — the designers of the lower bound — have the freedom to make the

algorithm choose a specific vertex of degree 4, as it does not itself give any preference. Suppose

therefore, that it selects v3 to branch on. It creates two subproblems:

• G \N [v3], a graph isomorphic to P 2
n−5, and

• G\v3, a graph isomorphic to a P2 connected with one edge to the first vertex of a P 2
n−3. In

the first recursive step of mis, the reduction rule on vertices of degree at most 1 includes

v1 in the independent set and recurses on the graph isomorphic to P 2
n−3.

Now, on each of these subproblems of sizes n − 3 and n − 5, the behavior of the algorithm

is again the same as for the original instance of size n. Therefore, the running time of the

36 Branching Algorithms

v1 v2 v3 v4 v5 v6 v7 v8 vn−1 vn

Figure 2.2: Graph P 2
n used to lower bound the running time of Algorithm mis

if ∃u, v ∈ V : N [u] ⊆ N [v] then
return mis(G \ v)

Figure 2.3: Additional simplification rule for Algorithm mis

algorithm can be lower bounded by Ω(xn) where x is the positive root of

x−3 + x−5 − 1,

which is 1.193859 . . . ≈ 20.255632.... This gives a lower bound on the running time of Algo-

rithm mis of Ω(1.1938n).

Let us take a closer look at the decisions made by the algorithm with a P 2
n as input. The

size of the independent set increases by 1 when including v3 and also by 1 when excluding v3

and including v1 by a simplification rule. But the instance obtained by the second recursive

call is, after the application of the simplification rule, a subgraph of the instance of the first

recursive call. Therefore, the second recursive call always leads to a solution that is at least

as good as the one obtained in the first recursive call. This is a special case of a set of local

configurations where there exist two vertices u, v such that N [u] ⊆ N [v]. In such a situation,

the algorithm can just exclude v from being in the maximum independent set it computes:

consider a maximum independent set Iv of G containing v, then Iv \ {v} ∪ {u} is a maximum

independent set of G not containing v.

Thus, we could enhance the algorithm by adding the corresponding simplification rule; see

Figure 2.3 1.

2.3 Measure Based Analysis

One drawback of the analysis presented in Section 2.1 is that, when reducing the problem

instance to several subinstances, many structural changes in the instance are not accounted for

by a simple analysis in just the instance size. Therefore, let us in this section use a potential–

function method akin to the measures used by Kullmann [Kul99], the quasiconvex analysis of

Eppstein [Epp06], the “Measure and Conquer” approach of Fomin et al. [FGK09b], the (dual

to the) linear programming approach of Scott and Sorkin [SS07], and much older potential–

function analyses in mathematics and physics.

For Algorithm mis, for example, the simple analysis does not take into account the decrease

1The simplification rule for vertices of degree 1 becomes obsolete by adding this rule as vertices of
degree 1 always fall under the scope of the new rule

2.3 Measure Based Analysis 37

of the degrees of the neighbors when deleting a vertex from the graph. Taking this decrease

of the degrees into account is particularly useful when deleting a vertex adjacent to vertices of

degree 2: their degree decreases to 1 and they (as well as their neighbors) are removed by a

simplification rule.

Therefore, let us in a first step model the worst case running time of the algorithm by a set

of multivariate constraints, where the variables correspond to the structures whose changes we

would like to take into account. These structures may depend as well on the input instance

the algorithm is currently considering, as on the output it is currently generating. Examples of

parameters that the analysis may rely on are the number of vertices/variables of certain degrees,

the number of triangles in the input graph, the size of the current solution, (an estimation of)

the treewidth of the input graph, the connectivity of the current solution, and possibly many

others.

For notational convenience, let us make the multivariate constraints depend solely on the

problem instance, not on both the problem instance and the currently computed solution. There

is no loss of generality as the current solution can always be handed to the algorithm as a part

of the input.

For Algorithm mis, let us model the worst case running time by T (n1, n2, . . .), abbreviated

as T
(
{ni}i≥1

)
where ni denotes the number of vertices of degree i in G.

For the analysis of the second branching rule, let us take into account the decrease of the

degrees of the neighbors of v when deleting v and the decrease by 1 of the degree of one vertex

in N2(v) when deleting N [v]. 2 Let

• d ≥ 3 be the degree of v, that is the maximum degree of G,

• pi, 2 ≤ i ≤ d such that
∑d

i=2 pi = d be the number of neighbors of v of degree i, and

• k such that 2 ≤ k ≤ d be the degree of a vertex in N2(v).

In the branch where v is deleted, the number of vertices of degree i

• decreases by 1 if d = i (v is removed),

• decreases by pi (the neighbors of v of degree i have their degrees reduced), and

• increases by pi+1 (the neighbors of v of degree i+ 1 have their degree reduced to i).

In the branch where N [v] is deleted, the number of vertices of degree i

• decreases by 1 if d = i (v is removed),

• decreases by pi (the neighbors of v of degree i are removed),

• decreases by 1 if k = i (a vertex in N2(v) of degree i has its degree reduced), and

2We assume for a moment that v has at least one vertex at distance 2. It will become clear that
this assumption is reasonable when we restrict the analysis to graphs of maximum degree 5. For a
vertex v of degree at most 5, |N2(v)| ≥ 1 if G has at least 7 vertices (for constant size instances our
algorithm runs in constant time), because G is connected.

38 Branching Algorithms

• increases by 1 if k = i+ 1 (a vertex in N2(v) of degree i+ 1 has its degree reduced to i).

Thus, we obtain the following recurrence where the maximum ranges over all d ≥ 3, all pi, 2 ≤
i ≤ d such that

∑d
i=2 pi = d and all k such that 2 ≤ k ≤ d:

T
(
{ni}i≥1

)
= max

d,p2,...,pd,k

{
T
({
ni − pi + pi+1 − Kδ(d = i)

}
i≥1

)
+T
({
ni − pi − Kδ(d = i)− Kδ(k = i) + Kδ(k = i+ 1)

}
i≥1

) (2.6)

Here, Kδ(·) is the logical Kronecker delta [CB94], returning 1 if its argument is true and 0

otherwise.

Remark 1. This model of the worst case running time of the algorithm makes the assumption

that it is always beneficial to decrease the degree of a vertex. When N [v] is deleted, many more

vertices in N2(v) could have their degree reduced (also by more than 1). Such assumptions are

often necessary to limit the number of cases that need to be considered in the analysis.

In order to make the number of terms in recurrence (2.6) finite, let us restrict the running

time analysis to graphs of maximum degree 5 in this section. In Section 2.7, we will combine

an analysis for graphs of maximum degree 5 with the simple analysis of the previous section to

derive an overall running time for Algorithm mis for graphs of arbitrary degrees.

Based on the multivariate recurrence (2.6) for 3 ≤ d ≤ 5, we would now like to compute an

upper bound of the algorithm’s running time. Eppstein [Epp06] transforms the models based on

multivariate recurrences into models based on weighted univariate linear recurrences and shows

that there exists a set of weights for which the solution of one model is within a polynomial

factor of the solution of the other model.

Definition 2.4. A measure µ for a problem P is a function from the set of all instances for P

to the set of non negative reals.

To analyze Algorithm mis, let us use the following measure of a graph G of maximum

degree 5, which is obtained by associating a weight to each parameter {ni}1≤i≤5:

µ(G) :=
5∑
i=1

wini, (2.7)

where wi ∈ R+ for i ∈ {1, . . . , 5} are the weights associated with vertices of different degrees.

With this measure and the tightness result of Eppstein, we may transform recurrence (2.6)

into a univariate recurrence. For convenience, let

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1} , (2.8)

denote the minimum decrease of µ(G) when reducing by 1 the degree of a vertex of degree at

least 2 and at most d.

By the result of Eppstein there exist weights wi such that a solution to (2.6) corresponds

to a solution to the following recurrence (for an optimal assignment of the weights), where the

2.3 Measure Based Analysis 39

maximum ranges over all d, 3 ≤ d ≤ 5, and all pi, 2 ≤ i ≤ d, such that
∑d

i=2 pi = d,

T (µ(G)) = max
d,p2,...,pd,k

T
(
µ(G)− wd −

∑d
i=2 pi · (wi − wi−1)

)
+T

(
µ(G)− wd −

∑d
i=2 pi · wi − hd

)
.

(2.9)

The solution to (2.9) clearly satisfies the following constraints for all d, 3 ≤ d ≤ 5, and all

pi, 2 ≤ i ≤ d, such that
∑d

i=2 pi = d:

T (µ(G)) ≥ T
(
µ(G)− wd −

∑d
i=2 pi · (wi − wi−1)

)
+ T

(
µ(G)− wd −

∑d
i=2 pi · wi − hd

)
. (2.10)

In order to upper bound the running time of algorithms based on a more involved measure

of the size of an instance and constraints like the ones in (2.10), let us prove a lemma analogous

to Lemma 2.3 on page 33 in Section 2.1.

Lemma 2.5. Let A be an algorithm for a problem P , c ≥ 0 be a constant, and µ(·), η(·) be

measures for the instances of P , such that for any input instance I, A reduces I to instances

I1, . . . , Ik, solves these recursively, and combines their solutions to solve I, using time O(η(I)c)

for the reduction and combination steps (but not the recursive solves),

(∀i) η(Ii) ≤ η(I)− 1, and (2.11)

k∑
i=1

2µ(Ii) ≤ 2µ(I). (2.12)

Then A solves any instance I in time O(η(I)c+1)2µ(I).

Proof. The result follows by induction on η(I). As in the proof of Lemma 2.3, we may replace

the hypotheses’ O statements with simple inequalities. For the base case assume that the

algorithm returns the solution to an empty instance in time 1 ≤ η(I)c+12µ(I). Suppose the

lemma holds for all instances I ′ with η(I ′) ≤ η(I)− 1 ≥ 0, then

TA(I) ≤ η(I)c +
k∑
i=1

TA(Ii) (by definition)

≤ η(I)c +
∑

η(Ii)
c+12µ(Ii) (by the inductive hypothesis)

≤ η(I)c + (η(I)− 1)c+1
∑

2µ(Ii) (by (2.11))

≤ η(I)c + (η(I)− 1)c+12µ(I) (by (2.12))

≤ η(I)c+12µ(I). (c ≥ 0 and µ(·) ≥ 0).

Thus the lemma follows.

Remark 2. The measure η(·) corresponds often to the size of the input, but we will see in

Chapter 3 an analysis for which η(·) is different. It is used to bound the depth of the recursion,

40 Branching Algorithms

i wi hi
0 0 0
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

Table 2.2: An assignment of the weights for the measure µ(G) =
∑5

i=1 wini for the analysis of
Algorithm mis

whereas µ(·) is used to bound the number of terminal recursive calls.

Slightly rephrasing (2.10) to fit into the framework of Lemma 2.5, we obtain the following

set of constraints. For each d, 3 ≤ d ≤ 5, and all pi, 2 ≤ i ≤ d, such that
∑d

i=2 pi = d,

2µ(G) ≥ 2µ(G)−wd−
Pd
i=2 pi·(wi−wi−1) + 2µ(G)−wd−

Pd
i=2 pi·wi−hd . (2.13)

Dividing by 2µ(G), we obtain

1 ≥ 2−wd−
Pd
i=2 pi·(wi−wi−1) + 2−wd−

Pd
i=2 pi·wi−hd . (2.14)

With the values in Table 2.2 for wi, all these constraints are satisfied. With these weights,

µ(G) ≤ 2n/5 for any graph of maximum degree 5 on n vertices. Taking c = 2 and η(G) = n,

Lemma 2.5 implies that Algorithm mis has running time O(n3)22n/5 = O(1.3196n) on graphs

of maximum degree at most 5.

Thus, we were able to improve the analysis of Algorithm mis by a different measure of

graphs. However, the weights in Table 2.2 are not optimal for this model of the running time

of Algorithm mis and we will discuss in the next section how to optimize the weights.

2.4 Optimizing the Measure

In the literature, mainly two techniques have been used to optimize the weights for measures

employed for upper bounding the worst case running time of branching algorithms. These are

a sort of random local search [FGK05, FGK09b] and quasiconvex programming [Epp06].

In this book, we will use convex programming to optimize the weights of the considered

measures. As affine multivariate functions are convex, and the function 2x is convex and non

decreasing, and the composition g ◦ f of a convex, non decreasing function g and a convex

function f is convex, and summing convex functions preserves convexity, all the constraints in

Lemma 2.5 are convex if the measure µ is a linear function in the weights.

In order to compute the optimal weights for the improved analysis of Algorithm mis, let us

use a standard trick in linear programming to make the conditions (2.8) on hd linear:

(∀i, d : 2 ≤ i ≤ d) hd ≤ wi − wi−1. (2.15)

2.4 Optimizing the Measure 41

Introductory example: Maximum Independent Set

maximum degree
param maxd integer >= 3;
all possible degrees
set DEGREES := 0..maxd;
weight for vertices according to their degrees
var W {DEGREES} >= 0;
weight for degree reductions from degree exactly i
var g {DEGREES} >= 0;
weight for degree reductions from degree at most i
var h {DEGREES} >= 0;
maximum weight of W[d]
var Wmax;

minimize the maximum weight
minimize Obj: Wmax;

the max weight is at least the weight for vertices of degree d
subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];

constraints for the values of g[]
subject to gNotation {d in DEGREES : 2 <= d}:
g[d] <= W[d]-W[d-1];

constraints for the values of h[]
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
h[d] <= W[i]-W[i-1];

constraints for max degree 3
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
2^(-W[3] - p2*g[2] - p3*g[3])

+ 2^(-W[3] - p2*W[2] - p3*W[3] - h[3]) <=1;

constraints for max degree 4
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])

+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;

constraints for max degree 5
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 : p2+p3+p4+p5=5}:
2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])

+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;

Figure 2.4: Mathematical program in AMPL modeling the constraints for the analysis of Algo-
rithm mis

42 Branching Algorithms

i wi hi
0 0 0
1 0 0
2 0.206018 0.206018
3 0.324109 0.118091
4 0.356007 0.031898
5 0.358044 0.002037

Table 2.3: An optimal assignment of the weights for the measure µ(G) =
∑5

i=1wini for the
analysis of Algorithm mis

Minimizing the maximum wi, 0 ≤ i ≤ 5 can thus be done by solving a convex program, whose

implementation in AMPL (A Mathematical Programming Language) [FGK03] is depicted in

Figure 2.4.

Using mathematical programming solvers such as IPOPT (part of the free, open-source

code repository at www.coin-or.org) and MINOS (a commercial solver), the mathematical

programs can be solved to optimality very fast (less than a second on a typical nowadays

laptop for the program in Figure 2.4 with 95 constraints).

The mathematical program provides the optimal values for wi, see Table 2.3. With these

weights, µ(G) ≤ 0.358044 · n for any graph of maximum degree 5 on n vertices. Taking c = 2

and η(G) = n, Lemma 2.5 implies that Algorithm mis has running time O(n3)20.358044·n =

O(1.2817n).

The tight constraints for the second branching rule of the algorithm is inequality (2.14) with

parameters

• d = 3, p2 = 3, p3 = 0,

• d = 3, p2 = 0, p3 = 3,

• d = 4, p2 = 0, p3 = 0, p4 = 4, and

• d = 5, p2 = 0, p3 = 0, p4 = 0, p5 = 5.

Improving at least one of the tight constraints usually leads to a better upper bound for the

worst case running time of the algorithm (except if there is another equivalent constraint).

2.5 Search Trees

The execution of a branching algorithm on a particular input instance can naturally be depicted

as a search tree or recursion tree: a rooted tree where the root is associated to the input instance

and for every node whose associated instance I is reduced to the subinstances I1, I2, . . . , Ik, it

has children associated to these subinstances; see Figure 2.5. Often the nodes of the search tree

are labeled with the measure of the corresponding instance.

For instance, Figure 2.6 shows a part of the search tree corresponding to the execution of

Algorithm mis on the graph P 2
n , depicted in Figure 2.2 on page 36.

www.coin-or.org

2.6 Branching Numbers and their Properties 43

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Figure 2.5: Illustration of a search tree

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

Figure 2.6: First levels of the search tree for the execution of Algorithm mis on the instance
P 2
n

With the assumptions in Lemma 2.5 on page 39, the running time of an algorithm A for a

particular input instance I is proportional — up to a polynomial factor — to the number of

leaves in the corresponding search tree. To upper bound the running time of an algorithm, one

could therefore bound the number of leaves in any search tree corresponding to the algorithm.

2.6 Branching Numbers and their Properties

Let us introduce a convenient and short way to specify the most common constraints that we

use. Given a constraint of the form

2µ(I)−a1 + · · ·+ 2µ(I)−ak ≤ 2µ(I), (2.16)

we define its branching number to be

2−a1 + · · ·+ 2−ak , (2.17)

and denote it by

(a1, . . . , ak) . (2.18)

Clearly, any constraint with branching number at most 1 is satisfied. The following two prop-

erties of branching numbers are useful to eliminate unnecessary constraints.

44 Branching Algorithms

Dominance For any ai, bi such that ai ≥ bi for all i, 1 ≤ i ≤ k,

(a1, . . . , ak) ≤ (b1, . . . , bk) , (2.19)

as 2−ai ≤ 2−bi for all i, 1 ≤ i ≤ k. We say in this case that the branching number

(a1, . . . , ak) is dominated by the branching number (b1, . . . , bk). In particular, this implies

that for any a, b > 0,

either (a, a) ≤ (a, b) or (b, b) ≤ (a, b) . (2.20)

Balance If 0 < a ≤ b, then for any ε such that 0 ≤ ε ≤ a,

(a, b) ≤ (a− ε, b+ ε) (2.21)

by convexity of 2x. We say in this case that (a, b) is more balanced than (a− ε, b+ ε).

2.7 Exponential Time Subroutines

So far, we analyzed the running time of Algorithm mis for graphs of maximum degree 5 only.

In this section, we see one way to combine different analyses for different algorithms or different

analyses of the same algorithm. For an algorithm that can be divided into different stages,

the following lemma shows that it is allowed to “decrease” the measure when passing from one

stage to another.

Lemma 2.6. Let A be an algorithm for a problem P , B be an algorithm for (special instances

of) P , c ≥ 0 be a constant, and µ(·), µ′(·), η(·) be measures for the instances of P , such that

for any input instance I, µ′(I) ≤ µ(I) and for any input instance I, A either solves P on I by

invoking B with running time O(η(I)c+1)2µ
′(I), or reduces I to instances I1, . . . , Ik, solves these

recursively, and combines their solutions to solve I, using time O(η(I)c) for the reduction and

combination steps (but not the recursive solves),

(∀i) η(Ii) ≤ η(I)− 1, and (2.22)

k∑
i=1

2µ(Ii) ≤ 2µ(I). (2.23)

Then A solves any instance I in time O(η(I)c+1)2µ(I).

Proof. Again, the result follows by induction on η(I). For the base case, we assume that the

algorithm returns the solution to an empty instance in time O(1). If an instance I is solved in

time O(η(I)c+1)2µ
′(I) by invoking Algorithm B, then the running time of algorithm A to solve

instance I is TA(I) = O(η(I)c+1)2µ
′(I) = O(η(I)c+1)2µ(I) as µ′(I) ≤ µ(I). Otherwise,

TA(I) = O(η(I)c) +
k∑
i=1

TA(Ii) (by definition)

2.8 Towards a Tighter Analysis 45

= O(η(I)c+1)2µ(I). (following the proof of Lemma 2.5)

Very related is the idea of a piecewise linear measure [GSB95, DJW05, FK05, Wah08] which

can be seen as dividing the algorithm in different subroutines — one for each linear piece of the

measure.

To derive an upper bound for the worst case running time of Algorithm mis on general

instances, use Lemma 2.6 with A = B = mis, c = 2, µ(G) = 0.35805n, µ′(G) =
∑5

i=1 wini
with the values of the wi’s as in Table 2.3 on page 42, and η(G) = n. For every instance G,

µ′(G) ≤ µ(G) because for each i ∈ {1, . . . , 5}, wi ≤ 0.35805. Further, for each d ≥ 6,

(0.35805, (d+ 1) · 0.35805) ≤ 1.

Thus, Algorithm mis has running time O(1.2817n) for graphs of arbitrary degrees.

2.8 Towards a Tighter Analysis

The previous sections of this chapter provide us with fairly good tools to upper bound the

worst case running times of branching algorithms. This section shows how one can enhance the

measures to squeeze the upper bound a little bit closer to the actual worst case running time

of the algorithm.

2.8.1 Structures that Arise Rarely

It was — to our knowledge — first observed by Robson [Rob86] that branching on a local

configuration only affects the overall running time of the algorithm by a constant factor if this

local configuration is only selected (for branching) a constant number of times on the path from

a leaf to the root of any search tree corresponding to an execution of the algorithm.

This can be formally proved by slightly modifying the measure of the instance. Let C be a

constant and s be an “undesired” local configuration which may only be selected once on the

path from a leaf to the root in any search tree of the algorithm. Let

µ′(I) :=

{
µ(I) + C if s may be selected in the current subtree, and

µ(I) otherwise.
(2.24)

Consider an instance I where s is selected for branching. Then µ′(I) = µ(I) + C and for each

subinstance Ii, 1 ≤ i ≤ k, µ′(Ii) = µ(Ii). By giving a high enough constant value to C, the

branching number (
µ(I)− µ(I1) + C, . . . , µ(I)− µ(Ik) + C

)
is at most 1, with the reasonable assumption that branching on s does not increase the measure

46 Branching Algorithms

else
Select v ∈ V such that

(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of minimum degree

return max (1 + mis(G \N [v]),mis(G \ v))

Figure 2.7: Modified branching rule for Algorithm mis

i wi hi
0 0 0
1 0 0
2 0.207137 0.207137
3 0.322203 0.115066
4 0.343587 0.021384
5 0.347974 0.004387

Table 2.4: An optimal assignment of the weights for the measure µ(G) =
∑5

i=1wini for the
analysis of Algorithm mis modified according to Figure 2.7

of the subinstances by more than a constant. The overall running time in Lemma 2.5 on page 39

can then be upper bounded by η(I)c+12µ
′(I) = η(I)c+12µ(I)+C = η(I)c+12C · 2µ(I).

This argument can easily be iterated for undesired local configurations that only arise at

most a constant number of times on the path from a leaf to the root of any search tree corre-

sponding to an execution of the algorithm.

Let us slightly modify the selection of the local configuration for the second branching rule

of Algorithm mis on page 32 as shown in Figure 2.7.

With this modification, Algorithm mis only selects v of degree d with all neighbors of

degree d when the graph is d-regular. As no connected d-regular graph contains any other

d-regular subgraph, let us define

µ′(G) = µ(G) +
5∑
d=3

Kδ(G has a d-regular subgraph)Cd (2.25)

where Cd, 3 ≤ d ≤ 5, are constants.

A little care is now required for analyzing the first branching rule of Algorithm mis, as we

do not necessarily have that µ′(G) = µ′(G1)+µ′(G\V (G1)). Suppose µ(G1), µ(G\V (G1)) > K

for a large enough constant K. Then the constraint

2µ
′(G1) + 2µ

′(G\V (G1)) ≤ 2µ
′(G)

is satisfied. Otherwise, µ(G1) ≤ K or µ(G \ V (G1)) ≤ K and a maximum independent set can

be computed in constant time for the subgraph whose measure µ is bounded by K.

Turning to the second branching rule, all the branching numbers for regular instances can

now be ignored as they are irrelevant to the worst case behavior of the algorithm. Thus, we

2.8 Towards a Tighter Analysis 47

obtain the following set of branching numbers. For each d, 3 ≤ d ≤ 5 and all pi, 2 ≤ i ≤ d such

that
∑d

i=2 pi = d and pd 6= d,

(
wd +

d∑
i=2

pi · (wi − wi−1), wd +
d∑
i=2

pi · wi + hd

)
.

All these branching numbers are at most 1 with the optimal set of weights in Table 2.4. Thus,

Algorithm mis, modified according to Figure 2.7 on the preceding page, has running time

O(1.2728n).

With the same arguments, we may also loosen one condition of Lemma 2.6 on page 44;

namely, we can replace µ′(I) ≤ µ(I) by µ′(I) ≤ µ(I) + C for a constant C.

2.8.2 State Based Measures

Sometimes it is very useful to introduce states of the algorithm in order to specify that some

branching with a “bad” branching number is always followed by a branching with a “better”

branching number. A convenient way to amortize over the branching numbers is to add a

constant to the measure depending on some properties of the instance, see for example [Wah04,

CKX05] or Chapters 4 and 5 for applications.

More formally, the measure of an instance I is divided in two parts

µ′(I) := µ(I) + Ψ(I),

where Ψ : I → R+ is a function from the set of instances I to the positive reals depending

on global properties of the instance. Being additive and constant–bounded, the function Ψ(·)
increases the running time only by a constant factor and has the potential to decrease the

branching numbers.

The intuition is that Ψ(I) is larger for branchings whose branching numbers with respect to

µ are high, but that create subinstances for which the branchings have low branching numbers

with respect to µ. In this way, the function Ψ(·) may enable us to decrease the highest branching

numbers by increasing some branching numbers that are not tight.

Consider Algorithm mis2 in Figure 2.8. It is similar to Algorithm mis, with the enhance-

ments discussed in Section 2.2 and Subsection 2.8.1, but it also contains the folding rule for

vertices of degree 2 (lines 8–9). For a graph G = (V,E) and a vertex v ∈ V of degree 2 whose

neighbors are not adjacent, the operation fold(G, v) returns the graph obtained from G \N [v]

by adding a new vertex fv and making it adjacent to the vertices in NG(v). Note that the

algorithm does not fold degree-2 vertices whose neighbors are adjacent due to the dominance

rule in lines 3–4. The folding operation has been used in [Bei99, CKJ01, FGK09b] and the

following lemma is well-known.

Lemma 2.7. Let G = (V,E) be a graph and v ∈ V be a vertex of degree 2 whose neighbors

are not adjacent. Then, α(G) = α(fold(G, v)) + 1, where α(·) denotes the size of a maximum

independent set.

48 Branching Algorithms

Algorithm mis2(G)
Input : A graph G = (V,E).
Output: The size of a maximum independent set of G.

if ∆(G) ≤ 2 then // G has maximum degree at most 21

return the size of a maximum independent set of G in polynomial time2

else if ∃u, v ∈ V : N [u] ⊆ N [v] then // u dominates v3

return mis2(G \ v)4

else if G is not connected then5

Let G1 be a connected component of G6

return mis2(G1) + mis2(G \ V (G1))7

else if ∃v ∈ V : d(v) = 2 then // fold vertices of degree 28

return 1 + mis2(fold(G, v))9

else10

Select v ∈ V such that11

(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of minimum degree

return max (1 + mis2(G \N [v]),mis2(G \ v))12

Figure 2.8: Algorithm mis2(G), computing the size of a maximum independent set of any
input graph G

Proof. To show that α(G) ≤ α(fold(G, v)) + 1, let I be a maximum independent set of G. If

NG[v] ∩ I contains only one vertex x, then I \ {x} is an independent set of fold(G, v) of size

α(G)− 1. Otherwise, NG[v] ∩ I = NG(v), and thus (I \NG(v)) ∪ {fv} is an independent set of

fold(G, v) of size α(G)− 1.

To show that α(G) ≥ α(fold(G, v)) + 1, let I be a maximum independent set of fold(G, v).

If fv 6∈ I, then I ∪ {v} is an independent set of G of size α(fold(G, v)) + 1. Otherwise, fv ∈ I,

and then (I \ {fv}) ∪NG(v) is an independent set of G of size α(fold(G, v)) + 1.

The folding operation of Algorithm mis2 is a simplification rule removing vertices of degree

2. On the positive side, this means that in the analysis of the branching in lines 10–12, we may

assume that the selected vertex has no neighbors of degree 2. On the negative side, the folding

operation has the potential to create regular instances over and over again. So, we cannot just

ignore branchings on regular instances as in the previous subsection.

To analyze Algorithm mis2, let us use Ψ(G) := Kδ(G is d-regular for some d ≥ 4) ·R for a

constant R, and add it to our measure µ. Note that the measure of an instance increases by

R when a branching on a nonregular graph creates a regular graph, and decreases by R when

the instance was regular and becomes nonregular. This decreases the branching numbers for

regular instances and increases the branching numbers for nonregular instances, and thereby

amortizes over the branching numbers. When branching on a non-regular instance, the created

subinstances may be regular, in which case the measure decrease is smaller by R. Thus, for

each d, 4 ≤ d ≤ 6 and all pi, 3 ≤ i ≤ d such that
∑d

i=3 pi = d and pd 6= d, we have the branching

2.9 Conclusion 49

d-
regular,
d ≥ 4

not d-
regular,
d ≥ 4−R

+R

Figure 2.9: A state graph for the analysis of Algorithm mis2

number

(
wd −R +

d∑
i=3

pi · (wi − wi−1)), wd −R +
d∑
i=3

pi · wi + hd

)
.

A branching on a vertex of degree 3 (the instance is 3-regular) does not create a d-regular

instance with d ≥ 4 unless the graph has constant size:

(w3 + 3 · (w3 − w2), 4w4 + h3) .

A branching on a vertex v of a d-regular instance with d ≥ 4 creates a non-regular instance

when v is deleted and may create a d-regular instance when N [v] is deleted. For each d ≥ 4,

we obtain the branching number

(wd +R + d · (wd − wd−1), (d+ 1) · wd + hd) .

Computing the optimal weights (which gives R ' 0.016) such that all branching numbers are

at most 1, we find that Algorithm mis2 has running time O(1.2571n).

2.9 Conclusion

In this chapter, we have seen how to establish worst case upper bounds on the running time of

branching algorithms. Methods and ideas how to improve the analysis have been extensively

discussed and exemplified on an algorithm for Maximum Independent Set, which served as

an introductory example; the goal was to illustrate methods of analysis, and not to design a

faster algorithm for this problem.

The methods and ideas presented in this chapter will be used in the forthcoming chapters

to design and analyze competitive algorithms for various problems.

On a side note, measure bases analyses have also been successfully used to design parame-

terized algorithms [FGR09, Gas09, LS09].

50 Branching Algorithms

Chapter 3
Feedback Vertex Sets

In all things there is a law of cycles.

Publius Cornelius Tacitus

In this chapter we present an O(1.7548n) time algorithm finding a minimum feedback vertex

set in an undirected graph on n vertices. We also prove that a graph on n vertices can contain at

most 1.8638n minimal feedback vertex sets and that there exist graphs having 105n/10 ≈ 1.5926n

minimal feedback vertex sets. The optimization algorithm, as well as the upper bound on the

number of minimal feedback vertex sets use a measure based analysis as presented in Section 2.3.

The lower bound on the number of minimal feedback vertex sets is derived via the construction

of an infinite family of graphs with this number of minimal feedback vertex sets.

3.1 Motivation and Related Work

The problem of finding a minimum feedback vertex set in a graph, that is the smallest set of

vertices whose removal makes the graph acyclic, has many applications, for example in genome

sequence assembly [PKS04] and VLSI chip design [KVZ01]. Its history can be traced back to

the early ’60s (see the survey of Festa et al. [FPR99]). It is also one of the classical NP-

complete problems from Karp’s list [Kar72]. Thus not surprisingly, for several decades, many

different algorithmic approaches were tried on this problem including approximation algorithms

[BBF99, BYGNR98, ENSZ00, KK01], linear programming [CGHW98], local search [BMT00],

polyhedral combinatorics [CDZ02, FR96], probabilistic algorithms [PQR99], parameterized al-

gorithms [DF99, GGH+06, DFL+07, CFL+08], and kernelization [BECF+06, Bod07, Tho09].

The problem is approximable within a factor of 2 in polynomial time [BBF99]. It was also

extensively studied from the point of view of parameterized complexity. There was a chain

of improvements (see for example [RSS06]) concluding with two 2O(k)nO(1)-time algorithms

obtained independently by different research groups [DFL+05, GGH+06]. It had been open for

a long time whether computing a feedback vertex set of a directed graph is fixed-parameter

tractable. Recently, this question has been resolved positively [CLL+08].

Although the topic of exact exponential time algorithms for NP-hard problems has led

52 Feedback Vertex Sets

to much research in recent years, and despite much progress on exponential time solutions to

other graph problems such as Chromatic Number [Bys04a, BHK09], Maximum Indepen-

dent Set [FGK09b, Rob86], and Minimum Dominating Set [FGK09b], no algorithm faster

than the trivial O∗(2n) was known for Feedback Vertex Set until 2006. For some special

graph classes, like bipartite graphs or graphs of maximum degree 4, algorithms of running time

O(1.8621n) and O(1.945n) respectively can be found in the literature [FP05, RSS05]. Further,

an algorithm for general graphs with running time O(1.7347n) has been obtained by Fomin and

Villanger [FV10].

3.2 Discussion of Results

The exact algorithm presented here solves Feedback Vertex Set in time O(1.7548n). The

main idea behind breaking the 2n barrier for Feedback Vertex Set is based on the choice

of the measure of the subproblems recursively generated by the algorithm.

By making use of similar ideas, we show that every graph on n vertices contains at most

1.8638n minimal feedback vertex sets. It is the first known upper bound for the number of min-

imal feedback vertex sets breaking the trivial O(2n/
√
n) bound (which is roughly the maximum

number of subsets of an n-element set such that none of them is contained in another one). This

bound has algorithmic consequences as well. By the result of Schwikowski and Speckenmeyer

[SS02], all minimal feedback vertex sets can be enumerated with polynomial time delay. Thus

our result implies that the running time of the algorithm by Schwikowski and Speckenmeyer

is O(1.8638n). We also show that there exist graphs with at least 1.5926n minimal feedback

vertex sets.

The rest of this chapter is organized as follows. Section 3.3 contains preliminary results. In

Section 3.4 we present an O(1.7548n) time algorithm finding a minimum feedback vertex set

in a graph on n vertices. In Section 3.5 we prove that every graph on n vertices has at most

1.8638n minimal feedback vertex sets and that there exists an infinite family of graphs having

1.5926n minimal feedback vertex sets.

3.3 Preliminaries

The set V ′ is a feedback vertex set if and only if G \ V ′ is a forest. A feedback vertex set is

minimal if it does not contain any other feedback vertex set as a proper subset, and minimum

if it has minimum cardinality among all feedback vertex sets in a graph. Let us note that X

is a minimal (minimum) feedback vertex set if and only if G \ X is a maximal (maximum)

induced forest. Thus the problem of finding a minimum feedback vertex set is equivalent to

the problem of finding a maximum induced forest. Similarly, the number of minimal feedback

vertex sets in a graph is equal to the number of maximal induced forests. For the description of

the algorithm it is more convenient to work with maximum induced forests than with feedback

vertex sets.

We call a subset F ⊆ V acyclic if G[F] is a forest. If F is acyclic then every connected

3.3 Preliminaries 53

component of G[F] on at least two vertices is called non-trivial. If T is a non-trivial connected

component of G[F] then we denote by Id(T, t) the operation of contracting all edges of T into

one vertex t and removing appeared loops. Note that this operation may create multiedges in G.

We denote by Id∗(T, t) the operation Id(T, t) followed by the removal of all vertices connected

with t by multiedges.

For an acyclic subset F ⊆ V , denote byMG(F) and byM∗
G(F) the set of all maximal and

maximum acyclic supersets of F in G, respectively (we omit the subindex G when it is clear

from the context which graph is meant). Let M∗ := M∗(∅). Then the problem of finding a

maximum induced forest can be stated as finding an element of M∗. We solve a more general

problem, namely finding an element of M∗(F) for an arbitrary acyclic subset F .

To simplify the description of the algorithm, we suppose that F is always an independent

set. The next lemma justifies this assumption.

Lemma 3.1. Let G = (V,E) be a graph, F ⊆ V be an acyclic subset of vertices and T be

a non-trivial connected component of G[F]. Denote by G′ the graph obtained from G by the

operation Id∗(T, t) and let F ′ := F ∪ {t} \ T . Then

• X ∈MG(F) if and only if X ′ ∈MG′(F
′), and

• X ∈M∗
G(F) if and only if X ′ ∈M∗

G′(F
′),

where X ′ := X ∪ {t} \ T .

Proof. Assume that X ∈ MG(F). If after the operation Id(T, t) a vertex v is connected with

t by a multiedge, then the set T ∪ {v} is not acyclic in G. Hence, no element of MG(F) may

contain v. In other words, X does not contain any vertices removed by the transformation from

G to G′ and hence X ′ = X∪{t}\T is a set of vertices of G′. Moreover, X ′ is an acyclic subset of

G′. To see this, assume by contradiction that X ′ induces a cycle C ′ in G′. Then C ′ necessarily

includes t because otherwise C ′ is induced by X in G in contradiction to the acyclicity of X.

Let x1 and x2 be the two neighbors of t in C ′. It follows that there is a path in G from x1 to

x2 including vertices of T only. Replace t in C ′ by such a path. As a result we obtain a cycle

induced by X in G in contradiction to the acyclicity of X. It remains to show that X ′ is a

maximal acyclic subset of G′. For this purpose, assume that there is a vertex v ∈ V (G′) \X ′

such that X ′ ∪ {v} is an acyclic subset. Then X ∪ {v} is an acyclic subset of G (any cycle in

X ∪ {v} can be transformed into a cycle in X ′ ∪ {v} by the operation Id(T, t)) larger than X

in contradiction to the maximality of X.

Arguing similarly, we can prove that if X ′ ∈ MG′(F
′) then X ∈ MG(F) and that X ∈

M∗
G(F) if and only if X ′ ∈M∗

G′(F
′).

By using the operation Id∗ on every non-trivial component of F , we obtain an independent

set F ′.

The following lemma is used to justify the main branching rule of the algorithm.

Lemma 3.2. Let G = (V,E) be a graph, F ⊆ V be an independent subset of vertices and v 6∈ F
be a vertex adjacent to exactly one vertex t ∈ F . Then

54 Feedback Vertex Sets

1. For every X ∈M(F), either v or at least one vertex of N(v) \ {t} is in X.

2. There exists X ∈ M∗(F) such that either v or at least two vertices of N(v) \ {t} are in

X.

Proof. 1. If there is X ∈ M(F) such that v 6∈ X and no vertex of N(v) \ {t} is in X, then

X ∪ {v} is also an induced forest of G. Thus X is not maximal, which is a contradiction.

2. Let us consider X ∈M∗(F) such that v 6∈ X. By item 1, at least one vertex z ∈ N(v)\{t}
is in X. For the sake of contradiction, let us assume that z is the only such vertex. Since X is

maximal, we have that X ∪ {v} is not acyclic. Because v is of degree at most 2 in G[X ∪ {v}],
we conclude that all the cycles in G[X ∪ {v}] must contain z. Then the set X ∪ {v} \ {z} is in

M∗(F) and satisfies the conditions.

Consequently, if N(v) = {t, v1, v2, . . . , vk}, then there exists X ∈ M∗(F) satisfying one of

the following properties:

1. v ∈ X;

2. v 6∈ X, vi ∈ X for some i ∈ {1, 2, . . . , k − 2} while vj 6∈ X for all j < i;

3. v, v1, v2, . . . , vk−2 6∈ X but vk−1, vk ∈ X.

In particular, if k ≤ 1, then v ∈ X for some X ∈M∗(F).

The following lemma is needed to handle the case where every vertex in V \F is adjacent to

a vertex t ∈ F . We reduce this case to finding a maximal (respectively maximum) independent

set in the graph G[V \ F] with some additional edges.

Lemma 3.3. Let G = (V,E) be a graph and F be an independent set in G such that V \
F = N(t) for some t ∈ F . Consider the graph G′ := G[N(t)] and for every pair of vertices

u, v ∈ N(t) having a common neighbor in F \ {t} add an edge uv to G′. Denote the obtained

graph by H and let I ⊆ N(t). Then F ∪ I ∈MG(F) if and only if I is a maximal independent

set in H. In particular, F ∪ I ∈M∗
G(F) if and only if I is a maximum independent set in H.

Proof. Let X ∈ MG(F) and u, v ∈ V \ F . If uv ∈ E then u, v, t form a triangle. If there is a

vertex w ∈ F \ {t} adjacent to both u and v then tuwv is a 4-cycle. In both cases, X cannot

contain u and v at the same time. On the other hand, if I ⊆ N(t) such that no two vertices

of I are adjacent in G and no two vertices of I have a common neighbor except t then F ∪ I
induces a forest in G. Therefore, X ∈ MG(F) if and only if X \ F is a maximal independent

set in H.

There are several fast exponential algorithms computing a maximum independent set in a

graph. We use the polynomial space algorithm of Kneis et al.

Theorem 3.4 ([KLR09]). Let G be a graph on n vertices. Then a maximum independent set

in G can be found in time O(20.2789n) and polynomial space.

For the upper bound on |MG(∅)| for any graph G, we also need the following well known

result of Moon and Moser [MM65].

Theorem 3.5 ([MM65]). A graph on n vertices has at most 3n/3 maximal independent sets.

3.4 Computing a Minimum Feedback Vertex Set 55

3.4 Computing a Minimum Feedback Vertex Set

In this section we show how to compute the minimum size of a feedback vertex set. Our

algorithm can easily be turned into an algorithm computing at least one such set. Instead of

working with feedback vertex sets directly, the algorithm finds the maximum size of an induced

forest in a graph. In fact, it solves a more general problem: for any acyclic set F it finds the

maximum size of an induced forest containing F .

During the work of the algorithm one vertex t ∈ F is called an active vertex. The algorithm

branches on a chosen neighbor of t. Let v ∈ N(t). Denote by K the set of all vertices of F other

than t that are adjacent to v. Let G′ be the graph obtained after the operation Id(K ∪ {v}, u).

We say that a vertex w ∈ V \{t} is a generalized neighbor of v in G if w is a neighbor of u in G′.

Denote by gd(v) the generalized degree of v which is the number of its generalized neighbors.

The description of the algorithm consists of a sequence of cases and subcases. To avoid a

confusing nesting of if-then-else statements let us use the following convention: the first case

which applies is used in the algorithm. Thus, inside a given case, the hypotheses of all previous

cases are assumed to be false.

Algorithm mif(G,F) computing for a given graph G and an acyclic set F the maximum

size of an induced forest containing F is described by the following preprocessing and main

procedures (let us note that mif(G, ∅) computes the maximum size of an induced forest in G).

Preprocessing

1. If G consists of k ≥ 2 connected components G1, G2, . . . , Gk, then the algorithm is called

on each of the components and

mif(G,F) =
k∑
i=1

mif(Gi, Fi),

where Fi := V (Gi) ∩ F for all i ∈ {1, 2, . . . , k}.

2. If F is not independent, then apply operation Id∗(T, vT) on an arbitrary non-trivial com-

ponent T of F . If T contains the active vertex then vT becomes active. Let G′ be the

resulting graph and let F ′ be the set of vertices of G′ obtained from F . Then

mif(G,F) = mif(G′, F ′) + |T | − 1.

Main procedures

1. If F = V then MG(F) = {V }. Thus,

mif(G,F) = |V |.

2. If F = ∅ and ∆(G) ≤ 1 then MG(F) = {V } and

mif(G,F) = |V |.

56 Feedback Vertex Sets

3. If F = ∅ and ∆(G) ≥ 2 then the algorithm chooses a vertex t in G of degree at least

2. Then t is either contained in a maximum induced forest or not. Thus the algorithm

branches on two subproblems and returns the maximum:

mif(G,F) = max{mif(G,F ∪ {t}),
mif(G \ {t}, F)}.

4. If F contains no active vertex then choose an arbitrary vertex t ∈ F as an active vertex.

Denote the active vertex by t from now on.

5. If V \ F = N(t) then the algorithm constructs the graph H from Proposition 3.3 and

computes a maximum independent set I in H. Then

mif(G,F) = |F |+ |I|.

6. If there is v ∈ N(t) with gd(v) ≤ 1 then add v to F :

mif(G,F) = mif(G,F ∪ {v}).

7. If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove v from G:

mif(G,F) = max{mif(G,F ∪ {v}),
mif(G \ {v}, F)}.

8. If there is v ∈ N(t) with gd(v) = 2 then denote its generalized neighbors by w1 and w2.

Either add v to F or remove v from G but add w1 and w2 to F . If adding w1 and w2 to

F induces a cycle, we just ignore the last branch.

mif(G,F) = max{mif(G,F ∪ {v}),
mif(G \ {v}, F ∪ {w1, w2})}.

9. If all vertices in N(t) have exactly three generalized neighbors then at least one of these

vertices must have a generalized neighbor outside N(t), since the graph is connected

and the condition of the case Main 5 does not hold. Denote such a vertex by v and its

generalized neighbors by w1, w2 and w3 in such a way that w1 6∈ N(t). Then we either

add v to F ; or remove v from G but add w1 to F ; or remove v and w1 from G and add

w2 and w3 to F . Similarly to the previous case, if adding w2 and w3 to F induces a cycle,

we just ignore the last branch.

mif(G,F) = max{mif(G,F ∪ {v}),
mif(G \ {v}, F ∪ {w1}),
mif(G \ {v, w1}, F ∪ {w2, w3})}.

3.4 Computing a Minimum Feedback Vertex Set 57

The correctness and the running time of the algorithm are analyzed in the following.

Theorem 3.6. Let G be a graph on n vertices. Then a maximum induced forest of G can be

found in time O(1.7548n).

Proof. Let us consider Algorithm mif(G,F) described above. The correctness of Preprocess-

ing 1 and Main 1, 2, 3, 4, 7 is clear. The correctness of Main 5 follows from Lemma 3.3,

while the correctness of Preprocessing 2 and Main 6, 8, 9 follows from Lemma 3.1 and 3.2

(indeed, applying Lemma 3.2 to the vertex u of the graph G′ shows that for some X ∈MG(F)

either v or at least two of its generalized neighbors are in X).

In order to evaluate the time complexity of the algorithm we use Lemma 2.6 with the

following measures:

µ(G,F, t) := α|N(t)|+ β|V \ (F ∪N(t))|
µ′(G,F) := 0.2789|V \ F |
η(G,F) := |V |+ |V \ F |

with α := 0.415 and β := 0.8113. In other words, for the measure µ each vertex in F has weight

0, each vertex in N(t) has weight α, each other vertex has weight β, and µ is equal to the sum

of the vertex weights. We will prove that a problem of size µ can be solved in time O(2µ). As

µ ≤ β(n− |F |), the running time is O(1.7548n−|F |).

First, we prove that every simplification and every branching which reduces an instance

(G,F) to an instance (G1, F1), the measure η(G,F) decreases by at least 1, that is η(G1, F1) ≤
η(G,F)− 1.

For the preprocessing cases and the cases Main 3, 6, 7, 8, 9, this immediately follows

from the description. Cases Main 1, 2 do not make any recursive calls. As case Main 4

never occurs in two consecutive nodes of the search tree, its statement may be reformulated

as “choose an arbitrary vertex t as new active vertex and go through the list of cases again to

select the appropriate one”. That is, the node corresponding to case Main 4 may be analyzed

together with the next node where t is specified. Finally in case Main 5, µ′ ≤ µ for every

instance and by Theorem 3.4, a maximum independent set in H can be found in time O(2µ
′
).

It is now clear that the following steps do not increase the measure µ and do not contribute

to the exponential factor of the running time of the algorithm: Preprocessing 1, 2 and

Main 1, 2, 4, 6.

In all the remaining cases the algorithm is called recursively on smaller instances. We

consider these cases separately.

In case Main 3 every vertex has weight β. So, removing v leads to an instance of size µ−β.

Otherwise, v becomes active after the next Main 4 step. Then all its neighbors will have weight

α, and we obtain an instance of size at most µ − β − 2(β − α) since v has degree at least 2.

Thus the branching number of this case is at most

(β, 3β − 2α) ≤ 1.

58 Feedback Vertex Sets

In case Main 7 removing vertex v decreases the size of the instance by α. If v is added to

F then we obtain a non-trivial component in F , which is contracted into a new active vertex

t′ at the next Preprocessing 2 step. Those of the generalized neighbors of v that had weight

α will be connected with t′ by multiedges and thus removed during the next Preprocessing 2

step. If a generalized neighbor of v had weight β then it will become a neighbor of t′, that is its

weight becomes α. Thus, in any case the size of the instance decreases by at least α+ 4(β−α)

as β − α < α. So, we have a branching number of at most

(α, 4β − 3α) ≤ 1.

In case Main 8 we distinguish three subcases depending on the weights of the generalized

neighbors of v. Let i be the number of generalized neighbors of v having weight β. Adding v to

F reduces the weight of a generalized neighbor either from α to 0 or from β to α. Removing v

from the graph reduces the weight of both generalized neighbors of v to 0 (since we add them

to F). According to this, we obtain the following branching numbers: for i ∈ {0, 1, 2},

(α + i · (β − α) + (2− i) · α, α + i · β + (2− i) · α) ≤ 1.

Case Main 9 is considered analogously to Main 8, except that at least one of the generalized

neighbors of v has weight β, that is i ≥ 1 (i = 0 is excluded by Main 5). In this case, we have

for i ∈ {1, 2, 3},

(α + i · (β − α) + (3− i) · α, α + β, α + i · β + (3− i) · α) ≤ 1.

Thus all the branching numbers are at most 1 and the proof follows from Lemma 2.6.

Remark 3. The only tight constraint is the one of Case Main 7 when v has generalized degree

4. Thus, an improvement of this case would improve the overall (upper bound of the) running

time of the algorithm.

3.5 On the Number of Minimal Feedback Vertex Sets

In this section we use a measure based analysis in order to obtain an upper bound of 1.8638n

for the number of maximal induced forests (and thus the number of minimal feedback vertex

sets) in a graph G on n vertices. It follows from the result of Schwikowski and Speckenmeyer

[SS02] that all maximal induced forests and all minimal feedback vertex sets can be enumerated

in time O(1.8638n).

We also give a lower bound, namely we exhibit an infinite family of graphs, all having

105n/10 ≈ 1.5926n maximal induced forests. Thus, the worst case running time of the algorithm

in [SS02] is between Ω(1.5926n) and O(1.8638n).

First, we prove the upper bound for the number of maximal induced forests.

Theorem 3.7. A graph G on n vertices contains at most 1.8638n maximal induced forests.

3.5 On the Number of Minimal Feedback Vertex Sets 59

Proof. To prove the theorem, we show that |MG(∅)| ≤ 1.8638n. We will prove a slightly stronger

statement, namely that for any acyclic subset F of G = (V,E), |MG(F)| ≤ 1.8638n−|F |. By

Lemma 3.1 we may assume that F is independent. For a graph G, an independent set F and

a vertex t ∈ F (we call such a vertex t an active vertex), we use the same kind of measure as

in the previous section:

µ(G,F, t) := α · |N(t)|+ β · |V \ (F ∪N(t))|,

with α := 0.58 and β := 0.89823. In the case where F = ∅, we set

µ(G, ∅) := β · |V |.

Note, that µ(G,F, t) ≤ µ(G, ∅) = βn for every F and t ∈ F . Let f(G,F) = |MG(F)| be the

number of maximal induced forests containing F and let f(µ) be a maximum f(G,F) among

all triples (G,F, t) and couples (G, ∅) of measure at most µ. We claim that

f(µ) ≤ 2µ.

Since for F = ∅ every vertex of G has weight β, the claim implies that |MG(∅)| ≤ 2βn ≤
20.89823n ≤ 1.8638n, which proves the theorem.

Let us observe that the claim is true for µ = 0. In fact, for µ = 0 we have that F = V .

ThusMG(F) = {V } and f(0) = 1. To prove the claim we proceed by induction assuming that

f(κ) ≤ 2κ for every κ < µ. Let (G,F, t) be an instance of measure µ.

We consider several cases. As in the previous section, we assume that inside a given case,

the hypotheses of all previous cases are assumed to be false.

Case 1: G is not connected. Denote by G1, G2, . . . , Gk the connected components of G. Let Fi
denote the intersection of F and the vertices of Gi, for i = 1, 2, . . . , k. If the vertices of V \ F
are present in at least two components, then for all i ∈ {1, . . . , k}, µ(Gi, Fi) < µ(G,F) and by

the induction assumption,

f(µ) =
k∏
i=1

f(Gi, Fi) ≤
k∏
i=1

2µ(Gi,Fi) = 2
Pk
i=1 µ(Gi,Fi) = 2µ.

Otherwise, each component which does not contain vertices of V \ F has exactly one maximal

induced forest (see the next case) and the component including all the vertices of V \F (which

determines the overall number of the maximal induced forests) has less vertices than G. Hence

we may consider that we prove the theorem by two-dimensional induction, the first dimension

is the induction on µ, the second dimension is induction on the number of vertices of the

underlying graph. The considered case follows from the induction assumption of the second

dimension. In fact, this is the only place in the proof where the second dimension is used.

Case 2: F = ∅. If ∆(G) ≤ 1 then MG(F) = {V }, that is f(G,F) = 1. Otherwise, let t be

a vertex of G of degree at least 2. Then every maximal forest either contains t, or does not.

Thus the number of maximal forests in G is equal to the number of maximal forests containing

60 Feedback Vertex Sets

t, that is f(G, {t}), plus the number of maximal forests not containing t, that is f(G \ {t}, ∅).
Since

µ(G, {t}, t) ≤ µ− β − 2(β − α)

and

µ(G \ {t}, ∅) ≤ µ− β,

we use the induction assumption and arrive at

f(µ) ≤ f(µ− β − 2(β − α)) + f(µ− β) ≤ 2µ−β−2(β−α) + 2µ−β ≤ 2µ.

From now on we denote by t ∈ F an active vertex (if F 6= ∅ contains no such vertex, we

may always choose an arbitrary vertex as active, reducing the measure).

Case 3: V \ F = N(t). Then by Lemma 3.3, f(µ) is equal to the number of maximal

independent sets in the graph H from Lemma 3.3. Since all vertices of V \ F have weight α,

H has µ/α vertices. By Theorem 3.5,

f(µ) ≤ 3µ/3α ≤ 2µ,

as (log2 3)/(3α) ≤ 1.

Case 4: There is a vertex v ∈ N(t) such that gd(v) = 0. In this case every X ∈ MG(F)

contains v and thus f(G,F) = f(G,F ∪ {v}). Since µ(G,F ∪ {v}, t) < µ, we have that

f(µ) ≤ 2µ.

Now we assume that V \ F 6= N(t), that F 6= ∅ and that G is connected. Then there is a

vertex v ∈ N(t) such that at least one of its generalized neighbors lies not in N(t) (and thus

contributes weight β to the measure). Among all such vertices we choose a vertex v of minimum

generalized degree. Similarly to the proof of Theorem 3.6, it follows from Lemmata 3.1 and 3.2

that every X ∈MG(F) must contain either v or at least one of its generalized neighbors.

Case 5: gd(v) = 1. Every forest X ∈ MG(F) either contains v, or does not contain v and

contains its generalized neighbor w1. The measure µ(G,F∪{v}, t) is at most µ−β as w1 6∈ N(t),

and the measure µ(G \ {v}, F ∪ {w1}, t) is at most µ− α− β. Hence

f(µ) ≤ f(µ− β) + f(µ− α− β) ≤ 2µ−β + 2µ−α−β ≤ 2µ.

Case 6: gd(v) = 2. Let us denote the generalized neighbors of v by w1 and w2 and let us

assume that w1 6∈ N(t). Then every forest X from MG(F)

— Either contains v;

— or does not contain v and contains w1;

— or does not contain v and w1 but contains w2.

3.5 On the Number of Minimal Feedback Vertex Sets 61

Let us note that if w2 ∈ N(t) and v belongs to a maximal induced forest X, then w2 does not

belong to X. Thus if w2 ∈ N(t), then the number of forests in M(F) is at most

f(G \ {w2}, F ∪ {v}) + f(G \ {v}, F ∪ {w1}) + f(G \ {v, w1}, F ∪ {w2}).

Thus

f(µ) ≤ f(µ− 2α− (β − α)) + f(µ− α− β) + f(µ− 2α− β)

≤ 2 · 2µ−α−β + 2µ−2α−β ≤ 2µ.

If w2 6∈ N(t), then

f(µ) ≤ f(µ− α− 2(β − α)) + f(µ− α− β) + f(µ− α− 2β)

≤ 2µ+α−2β + 2µ−α−β + 2µ−α−2β ≤ 2µ.

Case 7: gd(v) = 3. Denote the generalized neighbors of v by w1, w2, and w3 according to the

rule that wj 6∈ N(t) and wk ∈ N(t) imply j < k. Then for every forest X from MG(F) holds

one of the following

— X contains v;

— X does not contain v and contains w1;

— X does not contain v and w1 but contains w2; or

— X does not contain v, w1 and w2 but contains w3.

Let i be the number of generalized neighbors of v that are not adjacent to t. For i = 1, we have

f(µ) ≤ f(µ− α− (β − α)− 2α) + f(µ− α− β) + f(µ− 2α− β)

+ f(µ− 3α− β) ≤ 2µ−2α−β + 2µ−α−β + 2µ−2α−β + 2µ−3α−β ≤ 2µ.

For i = 2,

f(µ) ≤ f(µ− α− 2(β − α)− α) + f(µ− α− β) + f(µ− α− 2β)

+ f(µ− 2α− 2β) ≤ 2µ−2β + 2µ−α−β + 2µ−α−2β + 2µ−2α−2β ≤ 2µ.

For i = 3,

f(µ) ≤ f(µ− α− 3(β − α)) + f(µ− α− β) + f(µ− α− 2β) + f(µ− α− 3β)

≤ 2µ+2α−3β + 2µ−α−β + 2µ−α−2β + 2µ−α−3β ≤ 2µ.

Case 8: gd(v) ≥ 4. Then every forest X from MG(F) either contains v or does not. Thus

f(µ) ≤ f(µ− α− 4(β − α)) + f(µ− β) ≤ 2µ+3α−4β + 2µ−β ≤ 2µ.

62 Feedback Vertex Sets

0

1

2 3

4

5

6

7 8

9

Figure 3.1: Generating graph C5 � P2 used to lower bound the number of maximal induced
forests in a graph

Remark 4. The two tight constraints here are in the case Main 7, when i = 1 and when i = 3.

Again, an improvement of this case would provide a better bound on the number of minimal

feedback vertex sets.

Now, we prove the lower bound for the number of maximal induced forests.

Theorem 3.8. There exists an infinite family of graphs all having 105n/10 ≈ 1.5926n maximal

induced forests.

Proof. The infinite family consists of disjoint copies of the graph given in Figure 3.1 (the strong

product of a C5 and a P2). The same family of graphs has been used in [BMS05] to show that

the number of maximal induced bipartite subgraphs is lower bounded by 1.5926n.

A pair of vertices in the graph of Figure 3.1 are two vertices whose labels differ by 5.

This graph has 5 · 24 = 80 maximal induced forests containing one vertex from 4 of the pairs,

5·22 = 20 containing one pair and one vertex from each of the “opposite” pairs and 5 containing

two pairs. In total, it has 105 maximal induced forests.

It is clear that maximal induced forests of a disconnected graph are unions of maximal

induced forests of its connected components. Their number thus equals the product of the

number of maximal induced forests of each component. By taking multiple copies of the graph

in Figure 3.1, we get the lower bound of 105n/10.

3.6 Conclusion

In this chapter we presented an O(1.7548n) time algorithm finding a minimum feedback vertex

set in an undirected graph on n vertices. We also proved that a graph on n vertices can contain at

most 1.8638n minimal feedback vertex sets and that there exist graphs having 105n/10 ≈ 1.5926n

minimal feedback vertex sets. The design and analysis of algorithms establishing the first two

results is based on the following three ideas. The first one is considering the complementary

problem of maximum induced forest instead the straightforward computing of the feedback

vertex set. The second idea is a generalization of the maximum induced problems according

to which a subset of vertices F of the given graph G is introduced and the task is to find the

3.6 Conclusion 63

largest forest including F as a subset. The third idea is a good choice of the measure of the

subproblems recursively generated by the algorithm. This good choice led us to a significantly

better worst case running time analysis of the proposed algorithm.

There are a few possible directions of further research related to the topic of this chapter.

The first is the design of a faster algorithm for computing a minimum feedback vertex set (or

maximum induced forest). Another possible research direction is to ask the same questions

as addressed in this chapter to other classes of graphs than forests: Find a maximum induced

subgraph that belongs to a certain class C of graphs. In the literature, there exist algorithms

faster than O(2n) if C is, for example,

• the class of k-colorable graphs for k ≤ 3 (see [TT77, Rob86, Jia86, Bei99, FGK09b] for

k = 1, [Bys04b, RSS07, AT06] for k = 2 and [AT06] for k = 3),

• the class of graphs of treewidth at most t, for t = o(n/ log n) [FV10],

• the class of cluster graphs (see Chapter 9), and

• the class of d-regular graphs (see [GRS06]).

It is also easy to give an O∗(3n/3) algorithm for the case where C is the class of paths and

algorithms faster than O(2n) follow by a reduction to Minimum k-Hitting Set for all classes

of graphs with a finite number of finite forbidden subgraphs1, for example split graphs [FH77],

cographs, line graphs [Bei70] and trivially perfect graphs [Gol78]. It remains open to find an

algorithm faster than O(2n) for the cases where C is the class of chordal graphs, planar graphs,

or even outerplanar graphs, for example.

1see [Wah04, Wah07, FGK+08] and Chapter 9 for algorithms for Minimum k-Hitting Set

64 Feedback Vertex Sets

Chapter 4
On Bicliques in Graphs

Thoughts without content are empty, intuitions
without concepts are blind.

Immanuel Kant

Bicliques of graphs have been studied extensively, partially motivated by the large number of

applications. One of the main algorithmic interests is in designing algorithms to enumerate all

maximal bicliques of a (bipartite) graph. Polynomial time reductions have been used explicitly

or implicitly to design polynomial delay algorithms to enumerate all maximal bicliques.

Based on polynomial time Turing reductions, various algorithmic problems on (maximal)

bicliques can be studied by considering the related problem for (maximal) independent sets.

In this line of research, we show that the maximum number of maximal bicliques in a graph

on n vertices is exactly 3n/3 (up to a polynomial factor). We also give algorithms for various

problems related to bicliques, and mainly O(1.3642n) time algorithms to compute the number

of maximal independent sets and maximal bicliques in a graph.

4.1 Introduction

Bicliques. Let the vertex sets X and Y be independent sets of a graph G = (V,E) such that

xy ∈ E for all x ∈ X and all y ∈ Y . The subgraph of G induced by X ∪ Y is called a biclique

of G. Furthermore depending on the context and the application area, one also calls the pair

(X, Y) or the vertex set X ∪Y a biclique. From a graph–theoretic point of view it is natural to

consider a biclique of a graph G as a complete bipartite induced subgraph of G. For technical

reasons, we prefer to consider a biclique B ⊆ V of a graph G = (V,E) as a vertex set inducing

a complete bipartite subgraph of G.

Maximal bicliques. A biclique B ⊆ V of G is a maximal biclique of G if B is not properly

contained in another biclique of G.

A lot of the research on maximal bicliques and in particular on algorithms to enumerate

all maximal bicliques of (bipartite) graphs with polynomial delay is motivated by the various

66 On Bicliques in Graphs

applications of bicliques in (bipartite) graphs. Applications of bicliques in automata and lan-

guage theory, graph compression, artificial intelligence and biology are discussed in [AVJ98].

An important application in data mining is based on the formal concept analysis [GW96] where

each concept is a maximal biclique of a bipartite graph.

Previous work. The complexity of algorithmic problems on bicliques has been studied ex-

tensively. First results were mentioned by Garey and Johnson [GJ79], among them the NP–

completeness of the balanced complete bipartite subgraph problem. The maximum biclique

problem is polynomial for bipartite graphs [DKST01], andNP–hard for general graphs [Yan78].

The maximum edge biclique problem was shown to be NP–hard by Peeters [Pee03].

Hochbaum [Hoc98] gives approximation algorithms for node and edge deletion biclique prob-

lems. Enumerating maximal bicliques has attracted a lot of attention in the last decade. The

algorithms in [NR99, NR02] enumerate all maximal bicliques of a bipartite graph as concepts

during the construction of the concept lattice. Nowadays there are polynomial delay enu-

meration algorithms for maximal bicliques in bipartite graphs [DdFS07, MU04] and general

graphs [DdFS05, MU04]. There are also polynomial delay algorithms to enumerate all maximal

non–induced bicliques of a graph [AAC+04, DdFS07]1 and exponential time algorithms to find

non–induced bicliques of a given size [FGK+09a].

Prisner studied various aspects of bicliques in graphs. Among others, he showed that the

maximum number of maximal bicliques in a bipartite graph on n vertices is 2n/2. He established

a lower bound of 3n/3 and an upper bound of 1.6181n (up to a polynomial factor) on the

maximum number of maximal bicliques in a graph on n vertices [Pri00].

Our Results. We use a simple polynomial time Turing reduction to transform results on

maximal independent sets into results on maximal bicliques. We also improve upon Prisner’s

upper bound and give a simple proof that the maximum number of maximal bicliques in a graph

on n vertices is at most n · 3n/3. On the algorithmic side, our main result is an O(1.3642n) time

algorithm to count all maximal independent sets in a graph, which is established by using a

measure based analysis as described in Chapter 2. We show how to use it to count all maximal

bicliques of a graph within the same time bound and also provide a lower bound for the running

time of this algorithm.

4.2 Polynomial Time Reductions

There is a natural relation between independent sets (and cliques) on one hand and bicliques on

the other hand. Thus it is not surprising that polynomial–time Turing reductions (in fact mainly

Karp reductions) have been used in various hardness proofs for problems on bicliques [GJ79].

The famous polynomial delay algorithm of Johnson and Papadimitriou to enumerate all maxi-

mal independent sets [JYP88] is used explicitly or implicitly in polynomial delay algorithms to

enumerate maximal (non–induced) bicliques in (bipartite) graphs [AAC+04, DdFS05, DdFS07].

1When the condition that X and Y are independent sets in the definition of a biclique is omitted,
then (X,Y) is called a non–induced biclique of G. In this case a different maximality notion is used.
See for example [AAC+04].

4.2 Polynomial Time Reductions 67

The first reduction simply recalls an often used argument.

Lemma 4.1 (Property A). Let G = (V,E) be a bipartite graph. Let H be the bipartite comple-

ment of G. Then B is a (maximal) biclique of G if and only if B is a (maximal) independent

set of H.

The above lemma implies, among others, that any algorithm enumerating all maximal inde-

pendent sets within delay f(n) can be transformed into an algorithm enumerating all maximal

bicliques of a bipartite graph within delay f(n). The known tight bound of 2n/2 for the max-

imum number of maximal bicliques in a bipartite graph given in [Pri00] follows easily from

Property A and the corresponding bound for maximal independent sets in [HT93]. Based

on this property, Yannakakis observed that the problem of finding a maximum biclique in a

bipartite graph can be solved in polynomial time [Yan78].

The following property is central for this chapter.

Lemma 4.2 (Property B). Let G = (V,E) be a graph. For every v ∈ V , the graph Hv is

the graph with vertex set V (Hv) := N(v) ∪N2(v). Its edge set E(Hv) consists of the following

edges:

• xy ∈ E(Hv) if xy ∈ E and x, y ∈ N(v),

• xy ∈ E(Hv) if xy ∈ E and x, y ∈ N2(v),

• xy ∈ E(Hv) if xy /∈ E, x ∈ N(v) and y ∈ N2(v).

Then B ⊆ V is a (maximal) biclique of G if and only if B \ {v} is a (maximal) independent

set of a graph Hv for some v ∈ B.

Proof. Let B be a (maximal) biclique of G. Take some v ∈ B. Then B ⊆ {v}∪N(v)∪N2(v) in

G, where the independent setsX and Y of the bicliqueB satisfyX ⊆ N(v) and Y ⊆ {v}∪N2(v).

Since B is a biclique and by the construction of H, we obtain that B \ {v} is an independent

set. On the other hand, if B′ is a (maximal) independent set of Hv, for some v ∈ V , then

B′ ∩N(v) is an independent set of G[N(v)] and B′ ∩N2(v) is an independent set of G[N2(v)].

Hence B′ is a biclique of G \ v and B′ ∪ {v} is a biclique of G.

Finally, due to the correspondence between bicliques and independent sets, this also holds

for maximality by inclusion of vertices.

The corresponding Turing reduction does not increase the number of vertices, since |V (Hv)| ≤
|V | − 1. Thus this reduction is useful for exponential time algorithms.

Corollary 4.3. Given an algorithm to find a maximum independent set (respectively to count

all independent sets of size k) of a graph in time O∗(cn), there exists an algorithm to find a

maximum biclique (respectively to count all bicliques of size k) of a graph in time O∗(cn).

Proof. To find a maximum biclique of a graph G = (V,E), compute a maximum independent

set for each Hv, v ∈ V , constructed according to Property B and return the largest set of

vertices found. To count all bicliques of size k of a graph G = (V,E) on n vertices, order the

68 On Bicliques in Graphs

vertices of G: V := {v1, v2, . . . , vn}. For i = 1, . . . , n, compute the number of independent sets

of size k − 1 of H i
vi

where H i
vi

is obtained from Gi = G \ {v1, v2, . . . , vi−1} using Property B.

Adding up the results gives the number of bicliques of size k of G.

By this corollary and the algorithms in [Rob86, Wah08], a maximum biclique of a graph can

be found in time O(1.2109n) and all maximum bicliques of a graph can be counted in time

O(1.2377n).

Note that Corollary 4.3 is not directly applicable to use an algorithm for counting maximal

independent sets to count the maximal bicliques of a graph. The issues are that double–counting

has to be avoided at the same time as the maximality of each counted biclique has to be ensured.

4.3 Combinatorial Bound for the Number of Maximal

Bicliques

The maximum number of maximal bicliques in a graph on n vertices has been studied by

Prisner [Pri00]. He settled the question for bipartite graphs. The maximum number of maximal

bicliques in a bipartite graph on n vertices is precisely 2n/2. For general graphs the question

remained open. He established a lower bound of 3n/3 and an upper bound of (1.618034n +

o(1)) · n5/2 for the maximum number of maximal bicliques in a graph on n vertices. We settle

the question via an elegant proof based on Property B.

Theorem 4.4. The maximum number of maximal bicliques in a graph is at most n · 3n/3.

Proof. Let n be a positive integer and let G be any graph on n vertices. Applying Property B,

for every vertex v ∈ V , there is a one–to–one correspondence between the maximal bicliques B

of G satisfying v ∈ B and the maximal independent sets B−v of the graph Hv. By Theorem 3.5

on page 54, the maximum number of maximal independent sets in a graph on n vertices is 3n/3.

Thus the number of maximal bicliques containing vertex v is at most 3n/3 for each v ∈ V .

Consequently G has at most n · 3n/3 maximal bicliques.

Corollary 4.5. The maximum number of maximal bicliques in a graph is 3n/3 (up to a poly-

nomial factor).

4.4 Counting Algorithms

A problem related to enumerating all maximal bicliques of a graph is to compute the number

of maximal bicliques of a graph faster than by simply enumerating all of them. By property B,

an algorithm to count all maximal independent sets of a graph could be a cornerstone to design

such an algorithm. However no non–trivial algorithm for counting maximal independent sets

was known prior to our work. It is known that the counting problem for maximal independent

sets is #P–complete even when restricted to chordal graphs [OUU08]. Hence our goal is to

construct a fast exponential time algorithm solving this problem.

4.4 Counting Algorithms 69

4.4.1 Algorithm to Count all Maximal Independent Sets

We would first like to say a word of precaution. Even if the problems of counting all maximal

independent sets of a graph seems very similar to the problem of counting all maximum indepen-

dent sets of a graph, or all independent sets of a given size k, there is a fundamental difference

coming from the notion of maximality. All fast algorithms for counting all independent sets of

maximum size or of size k [DJ02, DJW05, FK05, Wah08] rely on a branching strategy similar

to the one of Algorithm mis in Chapter 2: vertices that are decided not to be in the counted in-

dependent sets of a branch can be deleted and removed from further consideration, and graphs

of maximum degree 2 can be handled in polynomial time. But if the algorithm is supposed to

count all maximal independent sets, this strategy does not work (unless P = #P). Consider a

graph G = (F ∪M,E) for which we would like to count all maximal independent sets of G that

are included in F . In other words, M is the set of vertices that have been decided not to be in

any maximal independent set in the current branch, but for each of them, a neighbor must be

added to ensure the maximality of the counted independent sets. By a simple reduction from

#Sat, it can be shown that this problem is #P–hard even when G[F] has maximum degree 1

(an edge in G[F] corresponds to a variable, its end points to the true/false value of this variable,

and the vertices in M correspond to the clauses of the formula).

Let G = (F,M,E) be a marked graph which are the graphs dealt with by our algorithm.

Vertices of F are called free and vertices of M are called marked. Let u be a vertex of F ∪M .

The degree of u is the number of neighbors in F ∪M and is denoted by d(u). Given a set

D ⊆ (F ∪M), the set N(u) ∩D is denoted by ND(u) and its cardinality is denoted by dD(u).

For a marked graph G = (F,M,E), the marked graph induced by the vertex sets F ′ ⊆ F and

M ′ ⊆M is G[F ′,M ′] = (F ′,M ′, E ∩ ((F ′ ∪M ′)× (F ′ ∪M ′))).

The following notions are crucial for our algorithm. A set S ⊆ F is a maximal independent

set of a marked graph G = (F,M,E) if S is a maximal independent set of G[F]. We say that

the maximal independent set S of G satisfies property Π if each vertex of M has a neighbor in

S.

Given a marked graph G, our algorithm computes the number of maximal independent sets

of G = (F,M,E) satisfying Π. Thus, a marked vertex u is used to force that each maximal

independent set S of G counted by the algorithm contains at least one free neighbor of u. This

is particularly useful to guarantee that only maximal independent sets of the input graph are

counted. In the remainder of this section, we suppose that G is a connected graph, otherwise

the algorithm is called for each of its connected components, and the product of the results

gives the number of maximal independent sets of G satisfying Π.

Given a simple graph G′ = (V,E), #MaximalIS
(
G = (V, ∅, E)

)
returns the number of

maximal independent sets of G′. See Figure 4.1 for the description of the algorithm.

We emphasize that all the halting ((H1)–(H2)) and simplification ((S1)–(S7)) rules are

necessary for our running time analysis in Subsections 4.4.3 and 4.4.4. The branching rule

(B) selects a vertex u, orders its free neighbors in a list BL(u) = [v1, v2, . . . , vdF (u)] and makes

a recursive call (that is a branching) counting all maximal independent sets containing u,

and a recursive call for each i = 1, 2, . . . , dF (u) where it counts all maximal independent sets

containing vi but none of v1, v2, . . . , vi−1.

70 On Bicliques in Graphs

Algorithm #MaximalIS
(
G = (F,M, E)

)
Input: A marked graph G = (F,M, E).
Output: The number of maximal independent sets of G satisfying Π.
// Simplification rules
if F ∪M is empty then

return 1 (H1)

if there exists u ∈M such that dF (u) = 0 then
return 0 (H2)

if there exists u ∈M such that NF (u) = {v} then
return #MaximalIS

(
G[F \N [v], M \N(v)]

)
(S1)

if there exists u ∈ F such that dF (u) = 0 then
return #MaximalIS

(
G[F \N [u], M \N(u)]

)
(S2)

if there exists u, v ∈M such that {u, v} ∈ E then
return #MaximalIS

(
(F,M,E \ {u, v})

)
(S3)

if there exists u, v ∈ F such that N [u] = N [v] then
count← #MaximalIS

(
G[F \ {v}, M]

)
Let MISu be the number of maximal independent sets computed by
#MaximalIS

(
G[F \ {v}, M]

)
containing u

return MISu + count (S4)

if there exists u ∈M and v ∈ N(u) such that N [v] ⊆ N [u] then
return #MaximalIS

(
G[F,M \ {u}]

)
(S5)

if there exists u, v ∈M such that N(u) = N(v) then
return #MaximalIS

(
G[F,M \ {v}]

)
(S6)

if there exists u ∈ F ∪M and v ∈ F such that N(u) = N(v) then
return #MaximalIS

(
G[F \ {v}, M]

)
(S7)

// Branching rule (B)
if there exists a marked vertex u with d(u) = 2 then

Choose u

else
Choose a vertex u ∈ (F ∪M) such that

(i) u has minimum degree among all vertices in F ∪M
(ii) among all vertices fulfilling (i), u has a neighbor of maximum degree
(iii) among all vertices fulfilling (i) and (ii), u has maximum dual degree

Let BL(u)← [v1, . . . , vdF (u)] be an ordered list of NF (u) such that:
(i) v1 is a vertex of NF (u) having a minimum number of neighbors in V \N(u); if there are
several choices, choose v1 of minimum degree
(ii) append (in any order) the vertices of N(v1) ∩NF (u) to the ordered list
(iii) append NF (u) \N [v1] ordered by increasing number of neighbors in V \N(u)

count← 0
if u is free then // select u (to be in the current maximal independent set)

count← #MaximalIS
(
G[F \N [u], M \N(u)]

)
foreach vi ∈ BL(u) do // mark each vertex of M ′ and select vi

M ′ ← {vj ∈ BL(u) : 1 ≤ j < i and {vj , vi} 6∈ E}
count← count+ #MaximalIS

(
G[F \ (M ′ ∪N [vi]), (M ∪M ′) \N(vi)]

)
return count

Figure 4.1: Algorithm #MaximalIS counting all maximal independent sets

4.4 Counting Algorithms 71

The selected vertex u is chosen according to three criteria (i)–(iii). By (i), u has minimum

degree, which ensures either that the algorithm makes few recursive calls or that many vertices

are removed in each branching. By (ii), u has a neighbor of maximum degree among all vertices

satisfying (i). If the degree of this neighbor is high, then many vertices are removed in at

least one recursive call. If the degree of this vertex is low, every vertex of minimum degree

has no high–degree neighbor. This property is exploited in the analysis of our algorithm,

which considers a decrease in the degree of a vertex of small degree more advantageous than

a decrease in the degree of a high–degree vertex. Similarly, (iii) ensures either many recursive

calls where many vertices are removed or a knowledge on the degrees of the neighbors of a

vertex of minimum degree. The ordered list BL(u) is defined in this way to ensure that for

certain configurations of N2[u], simplification rule (S1) or a (fast) subsequent branching on a

marked vertex of degree 2 is applied in many recursive calls.

4.4.2 Correctness of #MaximalIS

We show the correctness of the branching and simplification rules of #MaximalIS. (H1) If the

input graph has no vertices then the only maximal independent set is the empty set. (H2) If

there is a marked vertex u without any free neighbor then there is no maximal independent set

satisfying Π. (S1) If a marked vertex u has only one free neighbor, it has to be in any maximal

independent set to satisfy Π. (S2) By maximality, each free vertex without any free neighbor

has to belong to all maximal independent sets. (S3) Since marked vertices cannot belong to any

maximal independent set, edges between two marked vertices are irrelevant and can be removed.

(S4) Suppose u, v ∈ F are two free vertices and N [u] = N [v]. Every maximal independent

set containing a neighbor of u does not contain v. Moreover, every maximal independent set

containing u can be replaced by one containing v instead of u. Thus, it is sufficient to remove

v and to return the number of maximal independent sets containing a neighbor of u plus twice

the number of maximal independent sets containing u. (Note that the algorithm can easily be

implemented such that the number of maximal independent sets containing u is obtained from

the recursive call. For example, keep a counter to associate to each free vertex the number of

maximal independent sets containing this vertex.) (S5) If u ∈ M has a neighbor v such that

all neighbors of v are also neighbors of u, then every maximal independent set of G \ u must

contain a vertex of N [v] \ {u} and thus a neighbor of u in G. (S6) If two marked vertices

have the same neighborhood then one of them is irrelevant. (S7) Let v be a free vertex and

u a vertex such that N(u) = N(v), and thus u and v are non adjacent. Hence every maximal

independent set containing a neighbor of u does not contain v and every maximal independent

set containing u (if u is free) also contains v. Thus the number of maximal independent sets is

the same as for G \ v.

(B) The algorithm considers the two possibilities that either u or at least one neighbor of u

is in the current maximal independent set. By induction and the fact that N [u] is removed if the

algorithm decides to add u to the current maximal independent set, every maximal independent

set containing u is counted and it is counted only once. Consider the possibility that at least

one neighbor of u is in the current maximal independent set and let vi be the first such neighbor

72 On Bicliques in Graphs

in the ordered list BL(u), containing all the free neighbors of u. That no maximal independent

set containing a vertex appearing before vi in BL(u) is counted, is ensured by either its deletion

(because it is a neighbor of vi) or the marking of this vertex. So, every maximal independent

set containing vi but neither u (removed as it is a neighbor of vi) nor a vertex appearing before

vi in BL(u) is counted exactly once.

4.4.3 Running Time Analysis of #MaximalIS

To analyze the running time of our algorithm, we use the following measure µ(G) of a marked

graph G.

µ := µ
(
G = (F,M,E)

)
:=

n−1∑
i=1

wi|Vi|+ Kδ(G has no marked vertex of degree 2)M2

The weights M2 and wi, 1 ≤ i ≤ n− 1 are real non–negative numbers that will be fixed later.

For 1 ≤ i ≤ n− 1, Vi denotes the set of vertices of degree i in G. The following values will be

useful in the analysis.

∆wi :=

{
wi − wi−1 if 2 ≤ i ≤ n− 1

w1 if i = 1

To further simplify the forthcoming analysis, we assume:

wi = wi+1, 4 ≤ i ≤ n− 1,

wi−1 ≤ wi, 2 ≤ i ≤ n− 1, and

∆wi ≥ ∆wi+1, 1 ≤ i ≤ n− 1.

It is not hard to see that an application of a simplification rule will not increase
∑n−1

i=1 wi|Vi|.
Furthermore no simplification rule can be applied more than n times, respectively m times for

(S3). As in every simplification rule and every branch of the branching rule, at least one vertex

or edge is removed, we set η(G) := n + m and use Lemma 2.5 on page 39 to upper bound the

running time of the algorithm. Let T (µ) = 2µ.

We only have to analyze the changes in measure when applying branching rule (B).

Case 1: (B) is applied to a marked vertex u with d(u) = 2.

Let v1 and v2 be its two neighbors. By (S3), that is since (S3) could not be applied, v1, v2 ∈ F ,

and by (S3), d(v1), d(v2) ≥ 2.

(a) Suppose d(v1) = d(v2) = 2. For i ∈ {1, 2}, let xi be the other neighbor of vi. If

d(x1) = d(x2) = 1 then the algorithm deals with a component of constant size, and the

number of maximal independent sets of such a component can be computed in constant

time. Suppose now that d(x1) ≥ 2. In the first branch (or subproblem) u, v1 and x1 are

removed. In the second branch u, v2 and x2 are removed. In both branches, the graph

might not have a marked vertex of degree 2 any more. Thus, the corresponding constraint

4.4 Counting Algorithms 73

is

T (µ) ≥ T (µ− 3w2 +M2) + T (µ− w1 − 2w2 +M2).

(b) Suppose d(v1) ≥ 3 and d(v2) ≥ 2. In the first branch u, v1 and at least two other neighbors

of v1 are removed. In the second branch u, v2 and the other neighbors of v2, at least one,

are removed. Thus, the corresponding constraint is T (µ) ≥ T (µ− 2w1−w2−w3 +M2) +

T (µ−w1 − 2w2 +M2). Since w2 ≤ w3 and w2 ≤ 2w1 (recall that ∆w1 ≥ ∆w2), it follows

that 3w2 ≤ 2w1 + w2 + w3 and thus the constraint imposed in case (b) is not stronger

than the one of case (a) by the Dominance property on page 43.

Case 2: Vertex u is chosen by the else statement of (B).

Thus u satisfies the conditions (i), (ii) and (iii). Let [v1, . . . , vdF (u)] be the Branching List, short

BL(u), built by the algorithm. Given a vertex vi, 1 ≤ i ≤ dF (u), of BL(u), we denote by Op(vi)

the operation of adding vi to the current maximal independent set, removing N [vi] and marking

the vertices v1, . . . , vi−1 that are not adjacent to vi.

Let ∆u denote the gain on the measure obtained by adding u to the current maximal indepen-

dent set. Removing u and its neighbors from the graph decreases µ(G) by wd(u) +
∑

v∈N(u) wd(v).

Moreover, the decrease of the degrees of vertices in N2(u) implies a gain of
∑

x∈N2(u)(wd(x) −
wd(x)−dN(u)(x)). Let M2(u) be equal to M2 if the subinstance obtained from adding u to the

current maximal independent set has a marked vertex of degree 2 after exhaustively applying

all the simplification rules, and equal to 0 otherwise. Then,

∆u := wd(u) +
∑

v∈N(u)

wd(v) +
∑

x∈N2(u)

(wd(x) − wd(x)−dN(u)(x)) +M2(u).

Let ∆Op(vi) denote the gain on the measure when vi ∈ BL(u), 1 ≤ i ≤ dF (u), is selected

and added to the maximal independent set. Again, by selecting vertex vi the vertices of N [vi]

are removed and thus a gain of wd(vi) +
∑

x∈N(vi)
wd(x) is obtained. Since neighbors of vertices

of N2(vi) have been removed, we gain
∑

y∈N2(vi)
(wd(y) − wd(y)−dN(vi)

(y)). The measure further

decreases whenever among the marked vertices of {v1, . . . , vi−1}, some of them have only one

remaining free neighbor after the deletion of N [vi]. By direct application of simplification rule

(S1), these vertices and their neighbors are also removed from the graph. We denote this extra

gain by marked1(Op(vi)) Thus,

∆Op(vi) := wd(vi) +
∑

x∈N(vi)

wd(x) +
∑

y∈N2(vi)

(wd(y) − wd(y)−dN(vi)
(y))

+ marked1(Op(vi)) +M2(vi).

Putting all together, we obtain the following general constraint for case 2:

T (µ) ≥ T (µ−∆u) +
∑

vi∈BL(u)

T (µ−∆Op(vi))

Finally, we conclude the time analysis by the measure based method described in Chapter 2.

We solve the corresponding convex program and establish an upper bound on the worst case

74 On Bicliques in Graphs

running time of our algorithm. Using the weights M2 = 0.2, w1 = 0.37962, w2 = 0.41133,

w3 = 0.44244, and w4 = 0.44804 we obtain:

Theorem 4.6. Algorithm #MaximalIS counts all maximal independent sets of a given graph G

in time O(1.3642n), where n is the number of vertices of G.

For our algorithm analysis the number of constraints is rather moderate and therefore we are

able to provide for the interested reader the details of the analysis and list all possible worst

cases in the next subsection.

4.4.4 Detailed Running Time Analysis of #MaximalIS

In this subsection we outline a detailed running time analysis of Algorithm #MaximalIS. The

branching corresponding to the selection of a marked vertex of degree 2 has already been

analyzed in detail in our high level analysis in Subsection 4.4.3. Here we give a list of cases,

corresponding to the analysis in Case 2 in Subsection 4.4.3. Each case has a number, a condition

telling us in which case we are, a picture and a constraint on the measure of an instance based on

the measure of the created subinstances in this case. For those cases, where it is not immediate

how the constraint is obtained, a comment is added observing facts needed to obtain it.

Denote the neighbors of u by v1, v2, . . . , vd(u). For a selected vertex u, we say that x is an

external neighbor of a vertex v ∈ N(u) if x is a vertex of N(v) \N [u].

Note that the algorithm can apply the branching rule on an r-regular graph, 2 ≤ r ≤ 4.

However, when dealing with such an r-regular graph any subsequent recursive calls will never

be on an r-regular graph again. Thus, these graphs are not relevant to establish the running

time bound (see Subsection 2.8.1). If the graph is 1-regular, then the algorithm would treat it

in polynomial time since the size of each connected component is bounded by a constant.

In the following case analysis, cases number 1 (with d(x1) = 4), 18 and 21 correspond to

the tight cases.

1 d(u) = 1, d(v1) = 2

u
v1 x1

T (µ) ≥ T (µ− w1 − w2 −∆wd(x1)) + T (µ− w1 − w2 − wd(x1))

2 d(u) = 1, d(v1) ≥ 3

u
v1

T (µ) ≥ T (µ− w1 − wd(v1)) + T (µ− wd(v1) − (d(v1)− 1) · w1 − w2)

Comment: v1 has a neighbor of degree at least 2, otherwise N [v1] is a connected compo-

nent.

3 d(u) = 2, d(v1) = 2, d(v2) = 3, d(x1) = 2, x1 being the other neighbor of v1

u

v1

v2

x1

T (µ) ≥ T (µ+w1−3w2−w3) +T (µ−2w2−w3) +T (µ−5w2−w3)

Comment: {v1, v2} 6∈ E, as d(x1) 6= d(v2). In the branch where v2 is selected, x1 is also

selected by (S1) as v1 becomes marked and has a unique neighbor. As N(u) 6= N(x1),

which is ensured by (S6) and (S7), x1 and v2 are not adjacent.

4.4 Counting Algorithms 75

4 d(u) = 2, d(v1) = 2, d(v2) = 3, d(x1) ≥ 3

u

v1

v2

x1

T (µ) ≥ T (µ− 2w2 − w3) + T (µ− w2 − 2w3) + T (µ− 2w2 − 4w3)

Comment: {v1, v2} 6∈ E, otherwise N [u] = N [v1] and (S4) or (S5) would apply. When

v2 is selected, x1 is also selected by (S1). By the selection rule of u, d(x1) = 3 and no

common neighbor of v2 and x1 has degree 2. If v2 and x1 are adjacent, the last branch

can be ignored as the instance has no maximal independent set by halting rule (H2). For

analyzing the last branch, also note that w3 ≤ 2w2 as ∆w3 ≤ ∆w2.

5 d(u) = 2, d(v1) = 3, d(v2) = 3

u

v1

v2
T (µ) ≥ T (µ− w2 − 2w3) + 2T (µ− 4w3)

Comment: The vertices of degree 2 in N2(u) are not adjacent to both v1 and v2 (oth-

erwise they have the same open neighborhood as u). Moreover, two adjacent vertices in

N2(u) of degree 2 are not adjacent to the same vertex in N(u) due to the simplification

rules. So, they have neighbors outside N [u] of degree at most 3.

6 d(u) = 2, d(v1) = 2, d(v2) ≥ 4

u

v1

v2
T (µ) ≥ T (µ− 2w2 − w4) + T (µ− 3w2) + T (µ− 6w2 − w4)

Comment: v1 and v2 are not adjacent due to (S4) and (S5). If they have a common

neighbor, ignore the last branch. In the last branch, v2 and the external neighbor of v1 are

selected.

7 d(u) = 2, d(v1) ≥ 3, d(v2) ≥ 4

u

v1

v2
T (µ) ≥ T (µ−w2−w3−w4) +T (µ− 3w2−w3) +T (µ− 4w2−w4)

76 On Bicliques in Graphs

8 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are adjacent

u

v1

v2

v3

T (µ) ≥ T (µ− 3w3 − w4) + 2T (µ− 4w3) + T (µ− 9w3 − w4)

Comment: v1 and v2 are not adjacent to v3, otherwise (S4) or (S5) would apply as v1 or

v2 would have the same closed neighborhood as u. Moreover, v1 and v2 do not share the

same external neighbor otherwise v1 and v2 have the same closed neighborhood. If v3 has

a common neighbor in N2(u) with v1 or v2, then ignore the last branch, otherwise v3 and

both external neighbors of v1 and v2 are selected.

9 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, N(u) is independent, in the last branch v1

and v2 disappear by simplification rules

u

v1

v2

v3

T (µ) ≥ T (µ− 3w3 − w4) + 2T (µ+ w2 − 5w3) + T (µ− 7w3 − w4)

Comment: In this case, when v3 is selected, v1 and v2 are removed by recursively

applying the simplification rules.

10 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, N(u) is independent, in the last branch v1

(or v2) does not disappear by simplification rules

u

v1

v2

v3

T (µ) ≥ T (µ− 3w3−w4) + 2T (µ+w2− 5w3) + T (µ+ 2w2− 7w3−
w4 −M2)

Comment: In the last branch v1 and v2 are marked and become of degree 2. Therefore

a marked vertex of degree 2 appears (−M2).

4.4 Counting Algorithms 77

11 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are not adjacent, v3 is adjacent

to v1 and v2

u

v1

v2

v3

T (µ) ≥ T (µ+ 2w2 − 5w3 − w4) + T (µ+ w1 − 4w3 − w4) + 2T (µ−
5w3 − w4)

Comment: The external neighbors of v1 and v2 have degree 3, otherwise v1 or v2 would

have a neighbor of higher degree or higher dual degree and would have been selected for

branching instead of u. Moreover, the external neighbors of v1 and v2 are distinct, otherwise

(S6) or (S7) would apply. Finally, note that BL(u) = [v1, v3, v2] or BL(u) = [v2, v3, v1]. and

are distinct.

12 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are not adjacent, v3 is adjacent

to v2 (or v1)

u

v1

v2

v3

T (µ) ≥ 2T (µ+w2−4w3−w4)+T (µ+w2−6w3−w4)+T (µ−6w3)

Comment: BL(u) = [v2, v3, v1] and the external neighbor of v2 has degree 3, otherwise

v2 would have been selected for branching as it has either a neighbor of higher degree or

higher dual degree than u.

13 d(u) = 3, d(v1) ≥ 3, d(v2) ≥ 4, d(v3) ≥ 5

u

v1

v2

v3

T (µ) ≥ T (µ− 2w3− 2w4) +T (µ− 4w3) +T (µ− 4w3−w4) +T (µ−
5w3 − w4)

14 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are adjacent

u

v1

v2

v3

T (µ) ≥ T (µ− w3 − 3w4) + 2T (µ− 2w3 − 2w4) + T (µ− 8w3 − w4)

Comment: v1 and v2 are not adjacent to v3 because of (S4) and (S5) and they have

distinct (by (S4) and (S5)) external neighbors of degree 3 or 4 (by the selection rule of u).

If v3 has a common neighbor with v1 or v2 (except u), ignore the last branch.

78 On Bicliques in Graphs

15 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are not adjacent, v3 is adjacent

to v1 and v2

u

v1

v2

v3

T (µ) ≥ T (µ + 2w2 − 5w3 − w4) + T (µ + w1 + w2 − 5w3 − w4) +

T (µ+ 2w2 − 6w3 − w4) + T (µ− 5w3 − w4)

Comment: Note that BL(u) = [v1, v3, v2] or BL(u) = [v2, v3, v1] and that v1 and v2 have

distinct external neighbors of degree 3.

16 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are not adjacent, v3 is adjacent

to v2 (or v1)

u

v1

v2

v3

T (µ) ≥ T (µ+ 2w2− 4w3− 2w4) + T (µ+ 2w2− 5w3−w4) + T (µ+

2w2 − 6w3 − w4) + T (µ+ 2w2 − 7w3 − w4)

Comment: BL(u) = [v2, v3, v1]. The external neighbor of v2 has degree 3 and neighbors of

degree 3 and 3 or 4. In the third branch where v3 is selected, N [v3] is deleted (−4w3−w4),

v1 has its degree decreased (+w2 − w3), and another vertex has its degree decreased from

3 to 2 (+w2 − w3): the external neighbor x of v2 if it is not adjacent to v3, or a neighbor

of x if x and v3 are neighbors and N [x] 6⊆ N [v3], or the vertex in N2(x) \ N2[u] in the

remaining case.

17 d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, N(u) is independent

u

v1

v2

v3

T (µ) ≥ T (µ+ 2w2− 3w3− 3w4) + T (µ+w2− 2w3− 3w4) + T (µ+

w2 − 2w3 − 3w4 −M2) + T (µ+ 2w2 − 6w3 − w4 −M2)

Comment: The external neighbors of v1 and v2 have degree 3 and 3 or 4. In the last

two branches, a marked vertex of degree 2 is created.

18 d(u) = 3, d(v1) = 3, d(v2) = 4, d(v3) = 4, v1 is not adjacent to v2 and v3

u

v1

v2

v3

T (µ) ≥ T (µ−w3−3w4)+T (µ−2w3−2w4)+2T (µ+w2−4w3−2w4)

4.4 Counting Algorithms 79

19 d(u) = 3, d(v1) = 3, d(v2) = 4, d(v3) = 4, v1 is adjacent to v2 (or v3)

u

v1

v2

v3

T (µ) ≥ T (µ−w3− 3w4) +T (µ− 2w3− 2w4) +T (µ− 3w3− 2w4) +

T (µ− 5w3 − 2w4)

20 d(u) = 3, d(v1) = 4, d(v2) = 4, d(v3) = 4

u

v1

v2

v3

T (µ) ≥ T (µ− w3 − 3w4) + 3T (µ− 2w3 − 3w4)

Comment: Consider the branch where v1 is selected. A total of 5 vertices disappear and

at least 3 vertices of degree 4 either disappear or have their degree reduced from 4 to 3:

the vertices in N(u).

21 d(u) = 4, d(v1) = 4, d(v2) = 4, d(v3) = 4, d(v4) = 5

u

v1

v2

v3

v4

T (µ) ≥ 4T (µ− 5w4) + T (µ+ 3w3 − 9w4)

Comment: Consider the branch where v4 is selected. A total of 6 vertices disappear and

at least 3 vertices have their degree reduced from 4 to 3. We use the same argument for

v1, v2 and v3. Consider v1.

If v4 is not adjacent to v1: the degree of v4 is reduced.

If v4 is adjacent to v1 and N [v1] 6⊆ N [v4]: a neighbor of v1 has its degree reduced from 4

to 3.

If v4 is adjacent to v1 and N [v1] ⊆ N [v4]: Let y1 and y2 be the two common neighbors of

v1 and v4 (except u). y1 and y2 have degree 4 and neighbors of degree 4, 4, 4 and 5. At

least one of y1 and y2 has a neighbor of degree 4 outside N [v4], otherwise N [y1] = N [y2].

22 d(u) = 4, d(v3) = 5, d(v4) = 5

u

v1

v2

v3

v4

T (µ) ≥ 3T (µ− 5w4) + 2T (µ− 6w4)

80 On Bicliques in Graphs

23 d(u) = 4, d(v4) ≥ 6

u

v1

v2

v3

v4

T (µ) ≥ 4T (µ− 5w4) + T (µ− 7w4)

24 d(u) ≥ 5

u T (µ) ≥ 6T (µ− 6w4)

4.4.5 Count all Maximal Independent Sets in a Marked Graph of

Maximum Degree Two

Given a marked graph of maximum degree 2, #MaximalIS takes exponential time. We show in

this subsection, that all maximal independent sets of a marked graph of maximum degree 2 can

be counted in polynomial time. Adding this polynomial time procedure to #MaximalIS is likely

to be of help in implementations of the algorithm; it does however not improve our analysis of

its worst case running time.

Suppose first that G is a path Pn = (v1, v2, . . . , vn). Let Vi = {v1, v2, . . . , vi} for i = 1, . . . , n.

We define three values for the vertices of G with the following meaning:

• is(vi) - the number of maximal independent sets of G[Vi] containing vi

• od(vi) - the number of maximal independent sets of G[Vi−1] containing vi−1

• ond(vi) - the number of maximal independent sets of G[Vi−1] not containing vi−1

The algorithm gives the following values to v1:

• is(v1) = 0 if v1 is marked, and 1 otherwise,

• od(v1) = 0, and

• ond(v1) = 1.

Suppose the values for vi−1 are known, then the values for vi are computed by simple dynamic

programming as follows:

• is(vi) = 0 if vi is marked, and od(vi−1) + ond(vi−1) otherwise,

• od(vi) = is(vi−1), and

• ond(vi) = od(vi−1).

4.4 Counting Algorithms 81

v1 v2 v3 v4 v5 vl−1 vl

u1 u2 u3 u4 u5 ul−1 ul

· · ·

Figure 4.2: Graph Gl used to lower bound the running time of Algorithm #MaximalIS

The number of maximal independent sets satisfying property Π (defined in Subsection 4.4.1)

of G is is(vn) + od(vn).

If G is a cycle Cn, select an arbitrary vertex vi with neighbors vi−1 and vi+1 and return the

sum of the number of maximal independent sets

• containing vi if vi is not marked, or 0 otherwise,

• containing vi−1 if vi−1 is not marked, or 0 otherwise, and

• containing vi+1 but not vi−1 if vi+1 is not marked, or 0 otherwise.

This can easily be done by 3 recursive calls on the instances G\N [vi], G\N [vi−1] and G\N [vi+1]

and by marking vi−1 in the last recursive call.

Lemma 4.7. Let G be a marked graph with maximum degree 2. The number of maximal

independent sets of G satisfying property Π can be computed in linear time.

Remark 5. As od(vi) = is(vi−1), the value od(·) is redundant. But the above description

makes it easier to see that a slight generalization of this algorithm, which is very similar to

the algorithm in [Alb02], makes it possible to count all maximal independent sets of a marked

graph satisfying property Π in time O(3kn) when a path decomposition of width k of the graph

is known.

4.4.6 Lower Bound on the Running Time of the Algorithm

For most non–trivial branching algorithms, it is not known whether the upper bound of the

running time provided by the currently available analyses is tight or not. A lower bound for

the worst case running time of such algorithms is therefore desirable. Here we lower bound the

running time of Algorithm #MaximalIS by Ω(1.3247n).

Theorem 4.8. There exists an infinite family of graphs for which Algorithm #MaximalIS takes

time Ω(1.3247n), and thus its worst case running time is Ω(1.3247n).

Proof. The lower bound for the running time of #MaximalIS established here uses the same

family of graphs as the lower bound for an algorithm computing a minimum independent

dominating set [GL06].

Consider the graph Gl of Figure 4.2. It has n = 2l vertices. Note that none of the simplifi-

cation or halting rules are applicable to Gl. The first branching of #MaximalIS is on vertex u1

or vertex vl. Without loss of generality, suppose the algorithm always chooses the vertex with

82 On Bicliques in Graphs

u1

v2

u4

v2

v4

u3

u5

v3

u1

u3

v4

u3

u5

v3

v5

u4

v1

v3

u5

v3

v5

u4

u6

v4

u2

Figure 4.3: A part of the search tree of the execution of Algorithm #MaximalIS on the graph
Gl

smallest index when it has more than one choice (that is it chooses u1 for the first recursive

call).

The branching rule (B) then makes recursive calls on graphs with n − 3, n − 4 and n − 5

vertices, not marking any vertex. The structure of all resulting graphs is similar to Gl: either

isomorphic to Gl−2 or equal to Gl \ N [u1] or Gl \ N [u2]. The subsequent recursive calls again

remove 3, 4 and 5 vertices in each case and do not mark any vertices.

The first levels of the corresponding search tree are depicted in Figure 4.3. Unless the graph

has at most 4 vertices, each application of branching rule (B) satisfies the recurrence

T (n) = T (n− 3) + T (n− 4) + T (n− 5)

for this graph and therefore the running time for this class of graphs is Ω(αn) where α is the

positive root of x−3 + x−4 + x−5 − 1, that is 1.3247 < α < 1.3248.

4.4.7 Algorithm to Count all Maximal Bicliques

Finally, we consider the problem of counting all maximal bicliques of a graph G = (V,E). Let

G′ = (V ′, E ′) be a copy of G. Let G′′ = (V ′′, E ′′) where V ′′ := V ∪ V ′ and E ′′ = E ∪E ′ ∪ {xy′ :
x, y ∈ V, y′ is a copy of y in V ′, and (x = y or xy 6∈ E)}.

Lemma 4.9. The number of maximal independent sets of G′′ equals twice the number of max-

imal bicliques of G.

Proof. We show that there is a one–to–one correspondence between the bicliques of G and the

symmetric pairs of independent sets of G′′.

Let X ∪ Y be a biclique of G. Clearly, X, Y are independent sets in G and their copies

X ′, Y ′ are independent sets in G′. Let x ∈ X and y ∈ Y . Then xy, x′y′ ∈ E ′′ and xy′, x′y 6∈ E ′′.
So, X ∪ Y ′ and X ′ ∪ Y are independent sets in G′′.

Let X, Y ⊆ V be such that X∪Y ′ is an independent set in G′′ where X ′, Y ′ are the copies of

X, Y . Hence X, Y are independent sets in G. Let x ∈ X and y′ ∈ Y ′. Then xy ∈ E. So, X ∪Y
is a biclique in G. By the symmetry of G′′, the independent set X ′ ∪ Y in G′′ also corresponds

to the biclique X ∪ Y in G.

4.5 Conclusion 83

Clearly, this correspondence also holds for maximality by inclusion of vertices.

This implies that X ∪ Y is a maximal biclique of G if and only if X ∪ Y ′, and thus also

Y ∪X ′, are maximal independent sets of G′′.

With this construction and the algorithm for counting all maximal independent sets of a graph,

we are now able to give an algorithm for counting all maximal bicliques of a graph.

Theorem 4.10. There is an algorithm that counts all maximal bicliques of a given graph G in

time O(1.3642n), where n is the number of vertices of G.

Proof. The algorithm simply calls #MaximalIS
(
(V ′′, ∅, E ′′)

)
and divides the result by 2. Note

that G′′ has 2n vertices and that every vertex of G′′ has degree n. The first application of

branching rule (B) makes n+ 1 recursive calls and in each one, n+ 1 vertices are removed from

the marked graph. Thus the running time is (n + 1)(cn−1)nO(1) where O∗(cn) is the running

time of #MaximalIS on a graph with n vertices. The constant c = 1.3642 was rounded to derive

the running time for #MaximalIS, and thus the running time of the algorithm to count maximal

bicliques is O(1.3642n).

4.5 Conclusion

We have seen in this chapter that various results for independent sets translate to results for

bicliques. But the reverse questions are also interesting. For example, given an algorithm to

find a maximum biclique in a graph in time O(cn), is it possible to design an O(cn) algorithm

for Maximum Independent Set?

Given a graph G = (V,E) on n vertices, finding a maximum independent set in G could be

done by constructing a graph G′ obtained from G by adding an independent set I of size n such

that every vertex of I is adjacent to every vertex of V . Then G has an independent set of size

k if and only if G′ has a biclique of size n+k. This shows that it is possible to obtain a O∗(c2n)

algorithm for Maximum Independent Set from an algorithm for computing a maximum

biclique in a graph in time O∗(cn).

A simple variant of this reduction also shows that it isW [1]–hard to find an induced Kk,k in

a graph, where the parameter is k (now only k independent vertices need to be added to G and

made adjacent to every vertex in V). However the following question [DGMS07] is still open.

Open Question. Determine the parameterized complexity of the following problem: given a

graph G and a parameter k, does G have a Kk,k as a subgraph.

Note that the problem in the open question does not require the Kk,k to be an induced

subgraph.

84 On Bicliques in Graphs

Chapter 5
Max 2-Sat, Max 2-CSP, and everything in

between

All we ask for is satisfaction.

Silent Hill (2006), movie

In this chapter we consider “hybrid” Max 2-CSP formulae consisting of “simple” clauses,

namely conjunctions and disjunctions of pairs of variables, and general 2-variable clauses, which

can be any integer–valued functions of pairs of boolean variables. This allows an algorithm to

use both efficient reductions specific to AND and OR clauses, and other powerful reductions

that require the general CSP setting.

Parametrizing an instance by the fraction p of non-simple clauses, we give an algorithm that

is the fastest polynomial space algorithm currently known for Max 2-Sat (and other p = 0

formulae, with arbitrary mixtures of AND and OR clauses); the only efficient algorithm for

mixtures of AND, OR, and general integer–valued clauses; and tied for fastest for Max 2-CSP

(p = 1). Since a pure 2-Sat input instance may be transformed to a general CSP instance in

the course of being solved, the algorithm’s efficiency and generality go hand in hand.

The novel analysis in this chapter results in a family of running time bounds, each optimized

for a particular value of p. The algorithm uses new reductions, as well as recent reductions

such as “clause–learning” and “2-reductions” adapted to our setting’s mixture of simple and

general clauses. Each reduction imposes constraints on various parameters, and the running

time bound is an “objective function” of these parameters and p.

5.1 Introduction

Treatment of “Hybrid” Sat–CSP Formulae. We show a polynomial space algorithm that

solves general instances of integer–valued Max 2-CSP (formally defined in Section 5.2), but

that takes advantage of “simple” clauses, namely unit–weighted conjunctions and disjunctions.

In a sense made precise near Remark 7, exclusive–or is the only boolean function we cannot

treat efficiently.

86 Max 2-Sat, Max 2-CSP, and everything in between

Running Time Problem Space Reference

O∗
(
2m/2.879

)
Max 2-Sat poly Niedermeier and Rossmanith [NR00]

O∗
(
2m/3.448

)
Max 2-Sat poly implicit by Bansal and Raman [BR99]

O∗
(
2m/4

)
Max 2-Sat poly Hirsch [Hir00]

O∗
(
2m/5

)
Max 2-Sat poly Gramm et al. [GHNR03]

O∗
(
2m/5

)
Max 2-CSP poly Scott and Sorkin [SS03]

O∗
(
2m/5.263

)
Max 2-CSP poly Scott and Sorkin [SS04]

O∗
(
2m/5.217

)
Max 2-Sat poly Kneis and Rossmanith [KR05]

O∗
(
2m/5.769

)
Max 2-Sat exp Kneis et al. [KMRR09]

O∗
(
2m/5.5

)
Max 2-Sat poly Kojevnikov and Kulikov [KK06]

O∗
(
2m/5.769

)
Max 2-CSP exp Scott and Sorkin [SS07]

O∗
(
2m/5.88

)
Max 2-Sat poly Kulikov and Kutzkov [KK07]

O∗
(
2m/6.215

)
Max 2-Sat poly Raible and Fernau [RF08]

O∗
(
2m/5.263

)
Max 2-CSP poly Gaspers and Sorkin [GS09]

O∗
(
2m/6.321

)
Max 2-Sat poly Gaspers and Sorkin [GS09]

Table 5.1: A historical overview of algorithms for Max 2-Sat and Max 2-CSP

Let us give a simple example. In the Max 2-CSP instance

(x1 ∨ x2) + (x2 ∨ x4) + (x2 ∧ x3) + 3 · (x1 ∨ x3) + (2 · (x2)− 5 · x4 + (x2 ⊕ x4)), (5.1)

the first two clauses are unit–weighted disjunctive clauses, the third clause is a unit–weighted

conjunction, the fourth clause is a disjunction with weight 3, and the last clause is a general

integer–valued CSP clause (any integer–valued 2-by-2 truth table). Thus this example has 3

(the first three clauses) simple clauses and 2 non–simple clauses.

Both Max 2-Sat and Max 2-CSP have been extensively studied from the algorith-

mic point of view. For variable–exponential running times, the only two known algorithms

faster than 2n for Max 2-CSP (and even Max 2-Sat) are those by Williams [Wil05] and

Koivisto [Koi06], both with running time O∗
(
2n/1.262

)
. They employ beautiful ideas, but have

exponential space complexity.

For clause–exponential running times, there has been a long series of improved algorithms;

see Table 5.1. To solve Max 2-Sat, all early algorithms treated pure 2-Sat formulae. By

using more powerful reductions closed over Max 2-CSP but not Max 2-Sat, the Max 2-

CSP generalization of Scott and Sorkin [SS04] led to a faster algorithm. Then, several new

Max 2-Sat specific reductions once again gave the edge to algorithms addressing Max 2-Sat

particularly. Here we get the best of both worlds by using reductions specific to Max 2-Sat

(actually, we allow disjunctive as well as conjunctive clauses), but also using CSP reductions.

While it is likely that Max 2-Sat algorithms will become still faster, we believe that further

improvements will continue to use this method of combination.

Results. Let p be the fraction of non–simple clauses in the initial instance, no matter how

this fraction changes during the execution of the algorithm. In example (5.1), the fraction of

non–simple clauses is p = 2/5. The algorithm we present here is the fastest known polynomial

5.1 Introduction 87

space algorithm for p = 0 (including Max 2-Sat but also instances with arbitrary mixtures of

AND and OR clauses); fastest for all 0 < p < 0.29 (where no other algorithm is known, short

of solving the instance as a case of general Max 2-CSP); and tied for fastest for 0.29 ≤ p ≤ 1,

notably for Max 2-CSP itself. For the well known classes Max 2-Sat and Max 2-CSP, our

algorithm has running time O∗
(
2m/6.321

)
and O∗

(
2m/5.263

)
, respectively.

For “cubic” instances, where each variable appears in at most three 2-variable clauses, our

analysis gives running time bounds that match and generalize the best known when p = 0

(including Max 2-Sat); improve on the best known when 0 < p < 1/2; and match the best

known for 1/2 ≤ p ≤ 1 (including Max 2-CSP).

We derive running time bounds that are optimized to the fraction p of non–simple clauses;

see Table 5.2. Every such bound is valid for every formula, but the bound derived for one value

of p may not be the best possible for a formula with a different value.

Method of analysis, and hybrid Sat–CSP formulae. We view a Max 2-CSP instance as

a constraint graph G = (V,E ∪H) where vertices represent variables, the set of “light” edges

E represents simple clauses and the set of “heavy” edges H represents general clauses. The

running time analysis of our branching algorithm is measure–based, as described in Chapter 2.

The measure µ, that we use to upper bound the running time of the algorithm, includes weights

we and wh for each simple and general clause, and weights wd for each vertex of degree d.

To get the best possible running time bound subject to the constraints imposed by our

analysis of the reductions, we wish to minimize µ(G). To avoid looking at the full degree

spectrum of G, we constrain each vertex weight wd to be non–positive, and then ignore these

terms, resulting in a (possibly pessimistic) running time bound O∗
(
2|E|we+|H|wh

)
.

If the instance G is a Max 2-Sat instance, with no heavy edges, to minimize the running

time bound is simply to minimize we subject to the constraints: as there are no heavy edges

in the input instance, it makes no difference if wh is large. This optimization will yield a small

value of we and a large wh. Symmetrically, if we are treating a general Max 2-CSP instance,

where all edges are heavy, we need only minimize wh. This optimization will yield weights

we, wh that are larger than the Max 2-Sat value of we but smaller than its wh. For a hybrid

instance with some edges of each type, minimizing |E|we + |H|wh is equivalent to minimizing

(1 − p)we + pwh, where p = |H|/(|E| + |H|) is the fraction of non–simple clauses. This will

result in weights we and wh each lying between the extremes given by the pure 2-Sat and pure

CSP cases; see Figure 5.10 on page 128.

Thus, a new aspect of our approach is that it results in a family of nonlinear programs,

not just one: the nonlinear programs differ in their objective functions, which are tuned to the

fraction p of non–simple clauses in an input instance. The optimization done for a particular

value of p, by construction, gives a running time bound that is the best possible (within our

methods) for an input instance with this fraction of non–simple clauses. However, it is worth

noting that the constraints are the same in all the nonlinear programs, and thus the weights

(we, wh, and the vertex weights) that are optimal for one nonlinear program are feasible for

all the nonlinear programs. This means that our family of nonlinear programs results in a

family of running time bounds, each of them valid for every input instance, but with the bound

optimized to a given value of p being best for formulae with that fraction of non–simple clauses.

88 Max 2-Sat, Max 2-CSP, and everything in between

Novel aspects of the analysis. Our introduction of the notion of hybrids between Max

2-Sat and Max 2-CSP, discussed above, is the main distinguishing feature of the present

work. It yields a more general algorithm, applicable to CSP instances not just Sat instances,

and gives better performance on Max 2-Sat by allowing both efficient Sat–specific reductions

and powerful reductions that go outside that class. This is surely not the final word on Max

2-Sat algorithms, but we expect new algorithms to take advantage of this hybrid approach.

A secondary point is that CSP reductions such as combining parallel edges or reducing on

small cuts mean that in other cases it can be assumed that a graph has no parallel edges or

small cuts. This simplifies the case analysis, counter–balancing the complications of considering

two types of edges.

The hybrid view marks the biggest change to our approach, since it means that the objective

function depends on the fraction of non–simple clauses, so there is a continuum of nonlinear

programs, not just one.

Also, it is common to make some assumptions about the weights, but we try to avoid this,

instead only limiting the weights by the constraints necessitated by each reduction. This avoids

unnecessary assumptions compromising optimality of the result, which is especially important

in the hybrid realm where an assumption might be justified for Sat but not for CSP, or vice–

versa. It also makes the analysis more transparent.

As is often the case with exact algorithms, regularity of an instance is important, and in

our analysis we treat this with explicit weights penalizing regularity (motivated by a similar

accounting for the number of 2-edges in a hypergraph, in [Wah04], and by the “forced moves”

in [SS07]; see also Subsection 2.8.2 on page 47). This introduces some extra bookkeeping but

results in a more structured, more verifiable analysis.

We introduce several new reductions, including a 2-reduction combining ideas from [KK06]

(for the Sat case) and [SS07] (the CSP case), a “super 2-reduction”, and a generalization of

the “clause-learning” from [KK07].

Another useful tool we introduce is a simple graph–theoretic lemma on “good 1-reductions”

(Lemma 5.7) which shows that in various situations a certain number of these helpful simplifi-

cations occur. This eliminates some amount of case analysis.

5.2 Definitions

We use the value 1 to indicate Boolean “true”, and 0 “false”. The canonical problem Max Sat

is, given a boolean formula in conjunctive normal form (CNF), to find a boolean assignment

to the variables of this formula satisfying a maximum number of clauses. Max 2-Sat is Max

Sat restricted to instances in which each clause contains at most 2 literals.

We will consider a class more general than Max 2-Sat, namely integer–valued Max (2,2)-

CSP; we will generally abbreviate this to Max 2-CSP. An instance (G,S) of Max 2-CSP

is defined by a constraint graph (or multigraph) G = (V,E) and a set S of score functions.

There is a dyadic score function se : {0, 1}2 → Z for each edge e ∈ E, a monadic score function

sv : {0, 1} → Z for each vertex v ∈ V , and (for bookkeeping convenience) a single niladic score

“function” (really a constant) s∅ : {0, 1}0 → Z.

5.3 Algorithm and Outline of Analysis 89

A candidate solution is a function ϕ : V → {0, 1} assigning values to the vertices, and its

score is

s(ϕ) :=
∑
uv∈E

suv(ϕ(u), ϕ(v)) +
∑
v∈V

sv(ϕ(v)) + s∅.

An optimal solution ϕ is one which maximizes s(ϕ).

The algorithm we present here solves any instance of Max 2-CSP with polynomial space

usage, but runs faster for instances having a large proportion of “simple” clauses, namely

conjunctions and disjunctions.

A hybrid instance F = (V,E,H, S) is defined by its variables or vertices V , normal or light

edges E representing conjunctive clauses and disjunctive clauses, heavy edges H representing

arbitrary (integer–valued) clauses, and a set S of monadic functions and dyadic functions. Its

light–and–heavy–edged constraint graph is G = (V,E,H), though generally we will just think

of the graph (V,E∪H); no confusion should arise. We will write V (F) and V (G) for the vertex

set of an instance F or equivalently that of its constraint graph G.

We define the degree d(u) of a vertex u to be the number of edges incident on u where

loops are counted twice and the degree (or maximum degree) of a formula F (or its constraint

graph G) to be the maximum of its vertex degrees. Without loss of generality we will assume

that there is at most one score function for each vertex, though we will allow multiple edges.

Then, up to constant factors the space required to specify an instance F with constraint graph

G = (V,E,H) is the instance size

|F | := 1 + |V |+ |E|+ |H|. (5.2)

We use the symbol � to end the description of a reduction rule or the analysis of a case.

5.3 Algorithm and Outline of Analysis

We will show an algorithm (sketched as Algorithm max2csp in Figure 5.1) which, on input of

a hybrid instance F , returns an optimal coloring ϕ of F ’s vertices in time

T (F) = O∗
(
2we|E|+wh|H|

)
. (5.3)

5.3.1 Algorithm and General Arguments

The central argument (corresponding to the analysis for line 10 of Algorithm max2csp) is to

establish (5.3) for simplified formulae of maximum degree at most 6. We do this shortly,

in Lemma 5.1, with the bulk of the chapter devoted to verifying the lemma’s hypotheses.

Given Lemma 5.1, we then establish a similar running time bound for instances F of degree at

most 6 which are not simplified, that is, instances to which we may apply one or more of the

simplifications of Procedure Simplify (the analysis referred to by line 5 in Algorithm max2csp),

and for instances of arbitrary degree (the argument alluded to in line 3 of Algorithm max2csp).

90 Max 2-Sat, Max 2-CSP, and everything in between

Algorithm max2csp(F)
Input : A hybrid Max 2-Sat/ CSP instance F .
Output: An optimal coloring ϕ of the vertices of F .

if F has a vertex v of degree ≥ 7 then1

Branch on ϕ(v) = 0 and ϕ(v) = 1 to obtain F1, F2, recursively solve the instances F12

and F2 and return the best assignment for F .
(Analysis: Inductively establish running time, using that both F1 and F2 have at3

least 7 edges fewer than F .)

Simplify F . (See procedure Simplify.)4

(Analysis: Establish running time bound for general instances, using a bound for5

simplified instances.)
if F is nonempty then6

Apply first applicable branching reduction, obtaining F1, . . . , Fk.7

Simplify each of F1, . . . , Fk.8

Recursively solve F1, . . . , Fk and return the best assignment for F .9

(Analysis: Inductively establish running time bound for simplified instances of10

maximum degree ≤ 6, using
∑k

i=1 2µ(Fi) ≤ 2µ(F).)

Figure 5.1: Outline of Algorithm max2csp and its analysis

Procedure Simplify

Input : A hybrid instance F
Output: A simplified instance

while Any of the following simplification rules is applicable do
Apply the first applicable simplification: combine parallel edges; remove loops;
0-reduction; delete a small component; delete a decomposable edge; half–edge
reduction; 1-reduction; 1-cut; 2-reduction; 2-cut

return the resulting simplified instance

Figure 5.2: Procedure Simplify

5.3.2 Central Argument

The main argument is to establish (5.3) for formulae of maximum degree at most 6. We will

instead prove that

T (F) = O(|F |k2µ(F)), (5.4)

which is stronger if (as we will ensure) for some constant C and every simplified instance F of

degree at most 6, the measure µ(F) satisfies

µ(F) ≤ we|E|+ wh|H|+ C. (5.5)

The following Lemma follows directly from Lemma 2.5.

Lemma 5.1 (Main Lemma). Suppose there exists an algorithm A and constants D, c ≥ 1, such

5.3 Algorithm and Outline of Analysis 91

that on input of any hybrid CSP instance F of maximum degree at most D, A either solves F

directly in time O(1), or decomposes F into instances F1, . . . , Fk all with maximum degree at

most D, solves these recursively, and inverts their solutions to solve F , using time O(|F |c) for

the decomposition and inversion (but not the recursive solves). Further suppose that for a given

measure µ,

(∀F) µ(F) ≥ 0, (5.6)

and, for any decomposition done by algorithm A,

(∀i) |Fi| ≤ |F | − 1, and (5.7)

2µ(F1) + · · ·+ 2µ(Fk) ≤ 2µ(F). (5.8)

Then A solves any instance F of maximum degree at most D in time O(|F |c+1)2µ(F).

We will often work with the equivalent to (5.8), that

k∑
i=1

2µ(Fi)−µ(F) ≤ 1. (5.8′)

The main work of the chapter will be to find a set of decompositions and a measure µ

such that the decompositions satisfy inequality (5.7), µ satisfies inequality (5.6), and (more

interestingly) µ satisfies inequality (5.5) for some small values of we and wh, and finally, for

every decomposition, µ satisfies inequality (5.8).

5.3.3 Measure

For an instance F of (maximum) degree at most 6, we define a measure µ(F) as a sum of

weights associated with light edges, heavy edges, and vertices of various degrees (at most 6),

and constants associated with the maximum degree d of F and whether F is regular (for all

the degree criteria treating light and heavy edges alike):

µ(F) := ν(F) + δ(F), with (5.9)

ν(F) := |E|we + |H|wh +
∑
v∈V

wd(v), (5.10)

δ(F) :=
6∑
d=4

Kδ(∆(G) ≥ d)Cd +
6∑
d=4

Kδ(G is d-regular)Rd. (5.11)

Recall that Kδ(·) denotes the logical Kronecker delta.

To satisfy condition (5.5) it is sufficient that

(∀d) wd ≤ 0; (5.12)

this is also necessary for large regular instances. Since we are now only considering instances

92 Max 2-Sat, Max 2-CSP, and everything in between

of degree at most 6, we interpret “∀d” to mean for all d ∈ {0, 1, . . . , 6}.

5.3.4 Peripheral Arguments

We first dispense with non simplified instances.

Lemma 5.2. Let poly1(·) and poly2(·) be two polynomial functions. Suppose that every sim-

plified Max 2-CSP instance F of degree at most D ≤ 6 can be solved in time poly1(|F |)2µ(F).

Suppose also that

1. simplifying F (or determining that F is already simplified) takes time at most poly2(|F |),

2. any instance F ′ obtained from simplifying F satisfies |F ′| ≤ |F |−1 and µ(F ′) ≤ µ(F)+C ′

for some positive constant C ′, and

3. the simplification can be reversed in time at most poly2(|F |) to recover an optimal solution

to F from any optimal solution of F ′.

Then every instance F of degree at most D can be solved in time poly(|F |)2µ(F), with poly(·) =

poly2(·) + 2C
′
poly1(·).

Proof. Since simplifying reduces the instance size, a solution to the original instance F can be

obtained in time

T (F) ≤ poly2(|F |) + T (F ′)

≤ poly2(|F |) + poly1(|F ′|)2µ(F ′)

≤ poly2(|F |) + poly1(|F |)2µ(F)+C′

≤
(
poly2(|F |) + 2C

′
poly1(|F |)

)
2µ(F)

= poly(|F |)2µ(F).

The lemma’s hypotheses (1) and (3) will be satisfied by construction. Hypothesis (2) is

assured if we constrain that, for each simplification rule taking F to F ′,

ν(F ′) ≤ ν(F), (5.13)

since by transitivity the same inequality then holds for any sequence of simplifications starting

with F and ending with a simplified instance F ′, and the desired inequality µ(F ′) = ν(F) +

δ(F)− δ(F ′) ≤ ν(F) + C ′ follows by boundedness of δ and choosing C ′ sufficiently large.

Finally, we dispense with instances of high degree, the argument alluded to in line 3 of

Algorithm max2csp.

Lemma 5.3. Suppose that every Max 2-CSP instance F of degree at most 6 can be solved in

time O(|F |k1)2we|E|+wh|H|, with we, wh ≥ 1/7. Then for some sufficiently large k, every instance

F can be solved in time O(|F |k)2we|E|+wh|H|.

5.3 Algorithm and Outline of Analysis 93

Proof. As in the proof of Lemma 2.3, without loss of generality we may replace the O statement

in the hypothesis with a simple inequality. If F has any vertex v of degree at least 7, we will

set ϕ(v) to 0 and 1 to generate instances F0 and F1 respectively, solve them recursively, and

note that the solution to F is that of the better of F0 and F1, extended with the corresponding

value for ϕ(v). We may assume that the branching and its reversal together take time at most

|F |k2 .
Ensure that k ≥ k1 is large enough that for all x ≥ 2, xk2 ≤ xk − (x − 1)k, and note that

the hypothesis remains true replacing k1 with k.

The proof is by induction on F . If F has no vertex of degree at least 7 then we are already

done. Otherwise reduce F to F1 and F2, each having at least 7 fewer (light and/or heavy) edges

than F . By induction we may assume the bound for T (F1) and T (F2), so

T (F) ≤ |F |k2 + 2(|F | − 1)k2we|E|+wh|H|−7·1/7

= |F |k2 + (|F | − 1)k2we|E|+wh|H|

≤ |F |k2we|E|+wh|H|.

The worst case for the last inequality is when we|E| + wh|H| = 0 (it is nonnegative), and in

that case the inequality follows by the construction of k.

5.3.5 Optimizing the Measure

The task of the rest of the chapter is to produce the comprehensive set of reductions hypothe-

sized by Lemma 5.1 (to any formula there should be some reduction we can apply) and a measure

µ, satisfying the hypotheses, with we as small as possible. (More generally, if there are m(1−p)
conjunctions and mp general integer–valued clauses, we wish to minimize m(1− p)we +mpwh
or equivalently (1 − p)we + pwh, but for the discussion here we will just think in terms of

minimizing we.)

For each reduction, the hypothesized constraint (5.7) will be trivially satisfied, and it will

be straightforward to write down a constraint ensuring (5.8′). We then solve the nonlinear

program of minimizing we subject to all the constraints.

Minimizing we for a given set of constraints can be done with an off–the–shelf nonlinear

solver (see Section 5.8.5), but finding a set of reductions resulting in a small value of we remains

an art. It consists of trying some set of reductions, seeing which ones’ constraints are tight in

an optimal solution, and trying to replace these reductions with more favorable ones.

With the constraints established in the next sections, we will obtain our main result.

Theorem 5.4. Let F be an instance of integer–weighted Max 2-CSP in which each variable

appears in at most ∆ 2-clauses, and there are (1 − p(F))m conjunctive and disjunctive 2-

clauses, and p(F)m other 2-clauses. Then, for any pair of values we, wh in Table 5.2, the above

algorithm solves F in time O∗
(
2m·((1−p(F))we+p(F)wh)

)
. When the table’s p = p(F), we obtain

our best bound, O∗
(
2m·((1−p)we+pwh)

)
= O∗ (2mw).

Proof. Corollary of Lemma 5.1, solving the mathematical program given by the various con-

straints given in the next sections and minimizing pwh + (1− p)we.

94 Max 2-Sat, Max 2-CSP, and everything in between

p 0 0.05 0.1
∆ we wh w we wh w we wh w
3 0.10209 0.23127 0.10209 0.10209 0.23125 0.10855 0.10209 0.23125 0.11501
4 0.14662 0.31270 0.14662 0.14662 0.31270 0.15493 0.15023 0.26951 0.16216
5 0.15518 0.30728 0.15518 0.15637 0.27997 0.16255 0.15640 0.27951 0.16871
≥ 6 0.15819 0.31029 0.15819 0.15912 0.28223 0.16527 0.15912 0.28223 0.17143

p 0.2 0.3 1
∆ we wh w we wh w we wh w
3 0.10209 0.23125 0.12793 0.10209 0.23125 0.14084 0.16667 0.16667 0.16667
4 0.15023 0.26951 0.17409 0.15023 0.26951 0.18601 0.18750 0.18750 0.18750
5 0.15640 0.27951 0.18102 0.19000 0.19000 0.19000 0.19000 0.19000 0.19000
≥ 6 0.16520 0.25074 0.18231 0.19000 0.19000 0.19000 0.19000 0.19000 0.19000

Table 5.2: Values of we, wh and w := pwh + (1 − p)we according to the fraction p of heavy
edges and the maximum degree ∆ of a formula F . For any pair (we, wh) in the table, a running
time bound of O∗

(
2m·((1−p)we+pwh)

)
is valid for every formula, regardless of its fraction p(F) of

non–simple clauses, but the pair obtained when the table’s p equals p(F) gives the best bound

Which of the constraints are tight strongly depends on p and ∆.

5.3.6 The Measure’s Form

Let us explain the rather strange form of the measure. Ideally, it would be defined simply

as ν, and indeed for the measure we ultimately derive, all of our simplifications and most of

our branchings satisfy the key inequality (5.8′) with ν alone in place of µ. Unfortunately, for

regular instances of degrees 4, 5, and 6, satisfying this constraint would require a larger value

of we. Viewing (5.8′) equivalently as

k∑
i=1

2µ(Fi)−µ(F) ≤ 1,

adding a cost Rd to the measure of a d-regular instance F means that if a d-regular instance

F is reduced to nonregular instances F1 and F2 of degree d, each difference µ(Fi) − µ(F) is

smaller by Rd than the corresponding difference ν(Fi) − ν(F) (see Subsection 2.8.2). We will

therefore want

(∀d ∈ {4, 5, 6}) Rd ≥ 0. (5.14)

Of course, if a nonregular instance F of degree d is reduced to instances Fi of degree d one

or more of which is regular, there will be a corresponding penalty: for each d-regular Fi,

µ(Fi)− µ(F) is ν(Fi)− ν(F) +Rd.

Indeed, for each branching reduction we will have to consider several cases. Typically, the

“baseline” case will be the reduction of a nonregular instance to two nonregular instances. In

this case µ and ν are equivalent, and if we know for example that ν(Fi) − ν(F) ≤ xi, our

5.4 Some Initial Constraints 95

nonlinear program constrains that 2x1 + 2x2 ≤ 1.

If we reduce starting from a regular instance, the nature of the reductions is such that,

generically, we will get less favorable bounds ν(Fi) − ν(F) ≤ x′i (the values x′i will be larger

than the xi were), but we also get a “reward” (a further decrease of Rd) for whichever of F1

and F2 are not also regular. If we reduce starting from a nonregular instance but producing

one or more regular children, we will consider various possibilities.

The cases where a nonregular instance of degree d produces a regular instance Fi of degree

at most d− 1, can be dispensed with simply by choosing Cd sufficiently large, to reap whatever

additional reward is needed. Our branching rules are generally local and will never increase

the measure by more than a constant, so some constant Cd suffices. Also, our reductions never

increase the degree of an instance (each Fi has degree at most that of F), so Cd will never

work against us, and there is no harm in choosing it as large as we like. Thus, we never need

to consider the particulars of cases where the instance degree decreases, nor the values Cd (see

Subsection 2.8.1).

The remaining cases where a nonregular instance has regular children will be considered on

a case–by–case basis for each reduction. Generally, for a child to become regular means that,

beyond the constraint graph changes taken into account in the baseline case (with the child

nonregular), some additional vertices (those of degree less than d) must have been removed from

the instance by simplifications. Accounting for these implies a further decrease in measure that

compensates for the increase by Rd.

5.4 Some Initial Constraints

We have already derived one constraint for µ, namely (5.12), and we will now introduce some

notation and derive several more constraints.

Let us write w(v) for the weight of a vertex v (so w(v) = wd(v)), and similarly w(e) for the

weight of an edge (we or wh depending on whether e is light or heavy). Sometimes it will be

helpful to think of ν(F) as

ν(F) =
∑
v∈V

(
w(v) + 1

2

∑
e : v∈e

w(e)
)
, (5.15)

the sum of the weights of the vertices and their incident half edges. For convenience, we define

(and thus constrain)

ad := wd + 1
2
dwe. (5.16)

Thus, ad is equal to the summand in (5.15) for a vertex all of whose incident edges are light,

and smaller otherwise.

We require µ(F) ≥ 0 for all instances. Considering regular Max 2-Sat instances with

degree d (d = 0, . . . , 6), this implies that

(∀d) ad ≥ 0. (5.17)

96 Max 2-Sat, Max 2-CSP, and everything in between

(For d ≤ 3, (5.17) is implied by δ(F) = 0, with (5.15) and (5.16). For d ≥ 4, positivity of ν

might give positive measure to Kd even if δ(Kd) were negative, but then a graph consisting of

sufficiently many copies of Kd would still have negative measure.) If we also constrain that

(∀d ∈ {4, 5, 6}) Cd, Rd ≥ 0, (5.18)

then we have assured that µ(F) ≥ 0 for all instances. In the end, constraint (5.18) will not be

tight and so there is no loss in making the assumption.

Were it the case that wh ≤ we, then we could simply transform each light edge into a heavy

one, reducing the measure, and getting a better time bound for solving an instance of Max

2-CSP than an instance of Max 2-Sat or a hybrid instance. Thus if we are to gain any

advantage from considering Max 2-Sat or hybrid instances, it must be that

we ≤ wh. (5.19)

In the end we will find that this constraint is not tight, and so there is no cost to making the

assumption.1

For intuitive purposes let us leap ahead and mention that we will find that a0 = a1 = a2 = 0,

(thus w0 = 0, w1 = −1
2
we, and w2 = −we), while 0 < a3 < · · · < a6. Per (5.19) above, wh ≥ we.

Typically we will find that wh ≤ 2we, but not always. (Even where this fails to hold, notably for

cubic Max 2-Sat, we can still replace two conjunctions or disjunctions on the same variables

with one CSP edge: decreasing the degrees of the incident vertices decreases the measure enough

to make up for the increase of wh − 2we.) This “intuition” has changed several times as the

algorithm and its analysis have evolved, which supports the value of making as few assumptions

as possible, instead just writing down constraints implied by the reductions.

5.5 Simplification Rules and their Weight Constraints

We use a number of simplification rules (reductions of F to a single simpler instance F1 or F ′).

Some of the simplification rules are standard, the CSP 1-reductions are taken from [SS07],

the CSP 2-reductions combine ideas from [SS07] and [KK06], and a “super 2-reduction” is

introduced here. For vertices of degree 5 we use a branching reduction taken from [KK07] that

we generalize to hybrid instances.

We have already ensured constraint (5.6) by (5.17) and (5.18), so our focus is on ensuring

that each reduction satisfies (5.8′). Since each branching is followed by an (unpredictable)

sequence of simplifications, to have any hope of satisfying (5.8′) it is essential that each simpli-

fication from any F to F ′ satisfies

ν(F ′) ≤ ν(F); (5.20)

in any case this inequality is required by Lemma 5.2 (it duplicates inequality (5.13)). Constraint

1For the most part we will only write down constraints that are necessary, typically being required
for some reduction to satisfy (5.8′), but we make a few exceptions early on.

5.5 Simplification Rules and their Weight Constraints 97

(5.7) of Lemma 5.1 will be trivially satisfied by all our simplifications and branchings.

Recapitulating, in this section we show that (5.20) is satisfied by all our simplifications.

Ensuring (5.8′) will come when we look at the branching rules, and the measure component δ

we are ignoring here.

5.5.1 Combine Parallel Edges

Two parallel edges (light or heavy) with endpoints x and y may be collapsed into a single heavy

edge. This means that the “transformed” instance F ′ (F1 in Lemma 5.1, with k = 1) is identical

to F except that the two score functions sxy(ϕ(x), ϕ(y)) and s′xy(ϕ(x), ϕ(y)) in F are replaced

by their sum s′′xy(ϕ(x), ϕ(y)) in F ′. If one of the endpoints, say x, of the two parallel edges has

degree 2, collapse the parallel edges and immediately apply a 1-reduction (see 5.5.7) on x (of

degree 1), which removes x from the constraint graph. To ensure (5.20) we constrain

(∀d ≥ 2) − a2 − ad + ad−2 ≤ 0 : (5.21)

the left hand side is ν(F ′) − ν(F) thought of as the subtraction of a vertex of degree 2 and a

vertex of degree d and the addition of a vertex of degree d− 2. For the case that x and y have

degree d ≥ 3, we constrain

(∀d ≥ 3) − 2ad + 2ad−1 − we + wh ≤ 0 : (5.22)

the left hand side is ν(F ′) − ν(F) thought of as replacing two vertices of degree d by two

vertices of degree d− 1 and replacing a light edge by a heavy edge. (Remember that the degree

of a vertex is the number of incident edges rather than the number of distinct neighbors.) If

d(x) 6= d(y), the resulting constraint is a half–half mixture of a constraint (5.22) with d = d(x)

and another with d = d(y), and is thus redundant.

By construction, the score functions of F ′ and F are identical, so an optimal solution ϕ′ for

F ′ is an optimal solution ϕ of F ′ (no transformation is needed). �
Applying this reduction whenever possible, we may assume that the instance has no parallel

edges.

Note that we cannot hope to combine simple clauses (conjunctions and disjunctions) and still

take advantage of their being simple clauses rather than general CSP clauses: (x∨y)+(x̄∨ ȳ) =

1 + (x⊕ y), the additive 1 is irrelevant, and the XOR function is not simple.

5.5.2 Remove Loops

If the instance includes any edge xx ∈ E∪H, the nominally dyadic score function sxx(ϕ(x), ϕ(x))

may be replaced by a (or incorporated into an existing) monadic score function sx(ϕ(x)). This

imposes the constraints

(∀d ≥ 2) − ad + ad−2 ≤ 0. (5.23)

�

98 Max 2-Sat, Max 2-CSP, and everything in between

As this constraint is stronger than (5.21), we may ignore constraint (5.21) now. With this

and the edge–combining reduction, we may at all times assume the constraint graph is simple.

5.5.3 Delete a Vertex of Degree 0 (0-reduction)

If v is a vertex of degree 0, reduce the instance F to F ′ by deleting v and its monadic score

function sv, solve F ′, and obtain an optimal solution of F by augmenting the solution of F ′

with whichever coloring ϕ(v) of v gives a larger value of sv(ϕ(v)). Constraint (5.7) is satisfied,

since |F ′| = |F | − 1. Constraint (5.20) is satisfied if and only if −w0 ≤ 0. On the other hand,

for a useful result we need each wd ≤ 0 (inequality (5.12)), implying that w0 = 0, and thus

a0 = 0. (5.24)

We will henceforth ignore vertices of degree 0 completely. �

5.5.4 Delete a Small Component

For a constant C (whose value we will fix in the branching (reduction 5.7.1)), if the constraint

graph G of F has connected components G′ and G′′ with 1 ≤ |V (G′′)| < C, then F may be

reduced to F ′ with constraint graph G′. The reduction and its correctness are obvious, noting

that F ′′ may be solved in constant time. Since ν(F ′)− ν(F) ≤ −
∑

v∈V (G) ad(v), it is immediate

from (5.17) that (5.20) is satisfied. �

5.5.5 Delete a Decomposable Edge

If a dyadic score function sxy(ϕ(x), ϕ(y)) can be expressed as a sum of monadic scores, s′x(ϕ(x))+

s′y(ϕ(y)), then delete the edge and add s′x to the original sx, and s′y to sy. If x and y have equal

degrees, the constraint imposed is that (∀d ≥ 1) −we − 2wd + 2wd−1 ≤ 0, or equivalently,

(∀d ≥ 1) − ad + ad−1 ≤ 0 (5.25)

(the d = 1 case was already implied by (5.24) and (5.17)). As in (5.22), inequalities for degree

pairs are a mixture of those for single degrees. Note that we may ignore constraint (5.23) now

as it is weaker than (5.25). �

Three remarks. First, together with (5.24), (5.25) means that

0 = a0 ≤ a1 ≤ · · · ≤ a6. (5.26)

Second, if an edge is not decomposable, the assignment of either endpoint has a (nonzero)

bearing on the optimal assignment of the other, as we make precise in Remark 6. We will exploit

this in Lemma 5.5, which shows how “super 2-reduction” opportunities (reduction 5.6.1) are

created.

5.5 Simplification Rules and their Weight Constraints 99

Remark 6. Let

biasy(i) := sxy(i, 1)− sxy(i, 0),

the “preference” of the edge function sxy for setting ϕ(y) = 1 over ϕ(y) = 0 when x is assigned

ϕ(x) = i. Then sxy is decomposable if and only if biasy(0) = biasy(1).

Proof. sxy is decomposable if and only if its 2-by-2 table of function values has rank 1, which is

equivalent to equality of the two diagonal sums, sxy(0, 1)+sxy(1, 0) = sxy(0, 0)+sxy(1, 1), which

in turn is equivalent to sxy(0, 1)−sxy(0, 0) = sxy(1, 1)−sxy(1, 0), that is, biasy(0) = biasy(1).

Finally, when some vertices and their incident edges are deleted from a graph, we may think

of this as the deletion of each vertex and its incident half–edges (which typically we will account

for explicitly) followed (which we may not account for) by the deletion of any remaining half–

edges and the concomitant decrease in the degrees of their incident vertices (for edges one of

whose endpoints was deleted and one not). A “half–edge deletion” and vertex degree decrease

is precisely what is characterized by the left–hand side of (5.25), so it cannot increase the

measure ν. Even though such simplifications take place on an intermediate structure that is

more general than a graph, and that we will not formalize, for convenient reference we will call

this a half–edge reduction.

5.5.6 Half–Edge Reduction

Delete a half–edge, and decrease the degree of its incident vertex. By (5.25), this does not

increase the measure.

5.5.7 Delete a Vertex of Degree 1 (1-reduction)

This reduction comes from [SS07], and works regardless of the weight of the incident edge. Let y

be a vertex of degree 1, with neighbor x. Roughly, we use the fact that the optimal assignment

of y is some easily computable function of the assignment of x, and thus y and its attendant

score functions sy(ϕ(y)) and sxy(ϕ(x), ϕ(y)) can be incorporated into sx(ϕ(x)).

We take a precise formulation from [SS07]. Here V is the vertex set of F , E is the set of all

edges (light and heavy), and S is the set of score functions.

Reducing (V,E, S) on y results in a new instance (V ′, E ′, S ′) with V ′ = V \y and E ′ = E\xy.

S ′ is the restriction of S to V ′ and E ′, except that for all “colors” C ∈ {0, 1} we set

s′x(C) := sx(C) + max
D∈{0,1}

{sxy(CD) + sy(D)}.

Note that any coloring ϕ′ of V ′ can be extended to a coloring ϕ of V in two ways, depending

on the color assigned to y. Writing (ϕ′, D) for the extension in which ϕ(y) = D, the defin-

ing property of the reduction is that S ′(ϕ′) = maxD S(ϕ′, D). In particular, maxϕ′ S
′(ϕ′) =

maxϕ S(ϕ), and an optimal coloring ϕ′ for the instance (V ′, E ′, S ′) can be extended to an

optimal coloring ϕ for (V,E, S). This establishes the validity of the reduction.

100 Max 2-Sat, Max 2-CSP, and everything in between

Since the reduction deletes the vertex of degree 1 and its incident edge (light, in the worst

case), and decreases the degree of the adjacent vertex, to ensure (5.20), we constrain that

(∀d ≥ 1) −w1 − we − wd + wd−1 ≤ 0, or equivalently that

(∀d ≥ 1) ad−1 − ad − a1 ≤ 0,

which is already ensured by constraint (5.26). �

5.5.8 1-cut

Let x be a cut vertex isolating a set of vertices A, 2 ≤ |A| ≤ 10. (The 1-cut reduction extends

the 1-reduction, thought of as the case |A| = 1.) Informally, for each of ϕ(x) = 0, 1 we may

determine the optimal assignments of the vertices in A and the corresponding optimal score;

adding this score function to the original monadic score sx gives an equivalent instance F ′ on

variables V \ A. With A of bounded size, construction of F ′, and extension of an optimal

solution of F ′ to one of F , can be done in polynomial time. (Formal treatment of a more

general “cut reduction” on more general “Polynomial CSPs” can be found in [SS09].)

This simplification imposes no new constraint on the weights. Vertices in A and their

incident half–edges are deleted, and any remaining half–edges (those incident on x) are removed

by half–edge reductions (reduction 5.5.6); by (5.26), neither increases the measure ν. �

5.5.9 Contract a Vertex of Degree 2 (2-reduction)

Let y be a vertex of degree 2 with neighbors x and z. Then y may be contracted out of the

instance: the old edges xy, yz, and (if any) xz are replaced by a single new edge xz which in

general is heavy, but is light if there was no existing edge xz and at least one of xy and yz was

light.

The basics are simple, but care is needed both because of the distinction between light and

heavy edges and because we insist that the constraint graph be simple, and the 2-reduction is

the one operation that has the capacity to (temporarily) create parallel edges and in the process

change the vertex degrees. We consider two cases: there is an edge xz; and there is no edge xz.

If there is an edge xz then x and z both have degree 3 or more by Simplification 5.5.8, we

use the general Max 2-CSP 2-reduction from [SS07]. Arguing as in the 1-reduction above,

here the optimal assignment of y depends only on the assignments of x and z, and thus we may

incorporate all the score terms involving y, namely sy(ϕ(y)) + sxy(ϕ(x), ϕ(y)) + syz(ϕ(y), ϕ(z)),

into a new s′xz(ϕ(x), ϕ(z)), which is then combined with the original sxz(ϕ(x), ϕ(z)). The effect

is that y is deleted, three edges (in the worst case all light) are replaced by one heavy edge,

and the degrees of x and z decrease by one. If d(x) = d(y) = d, ν(F ′)− ν(F) ≤ 0 is assured by

−w2 − 3we + wh − 2wd + 2wd−1 ≤ 0, or equivalently

(∀d ≥ 3) − a2 − we + wh − 2ad + 2ad−1 ≤ 0,

which is already ensured by (5.22) and (5.17). As in (5.25), inequalities for pairs d(x) 6= d(y)

5.5 Simplification Rules and their Weight Constraints 101

are a mixture of those for single degrees. If xy or yz is heavy, then ν(F ′)− ν(F) ≤ −wh +we,

and we will capitalize on this later.

Finally, we consider the case where there was no edge xz. If xy and yz are both heavy, then

as in the first case we apply the general Max 2-CSP reduction to replace them with a heavy

edge xz, giving ν(F ′)− ν(F) ≤ −2wh + wh − w2 = −a2 − wh + we ≤ −wh + we.

Otherwise, at least one of xy and yz is light, and we show that the resulting edge xz is light.

(For pure Sat formulae, this is the “frequently meeting variables” rule of [KK06].) Without

loss of generality we assume that xy is the conjunctive constraint x∨ y or the disjunction x∧ y
(what is relevant is that the clause’s score is restricted to {0, 1}, and is monotone in ϕ(y)). We

define a bias

biasy(i) := (sy(1)− sy(0)) + (syz(1, i)− syz(0, i)), (5.27)

to be the “preference” (possibly negative) of sy+syz for setting ϕ(y) = 1 versus ϕ(y) = 0, when

z has been assigned ϕ(z) = i. If biasy(i) ≤ −1 then ϕ(y) = 0 is an optimal assignment. (That

is, for every assignment to the remaining variables, including the possibility that ϕ(x) = 0,

setting ϕ(y) = 0 yields at least as large as score as ϕ(y) = 1.) Also, if biasy(i) ≥ 0 then

ϕ(y) = 1 is an optimal assignment.

Thus, an optimal assignment ϕ(y) can be determined as a function of ϕ(z) alone, with no

dependence on ϕ(x). (This cannot be done in the general case where xy and yz are both heavy

edges.) With ϕ(y) a function of ϕ(z), the score syz(ϕ(y), ϕ(z)) may be incorporated into the

monadic score function sz(ϕ(z)). Also, there are only 4 functions from {0, 1} to {0, 1}: as a

function of ϕ(z), ϕ(y) must the constant function 0 or 1 (in which cases x ∨ y can be replaced

respectively by a monadic or niladic clause) or ϕ(z) or ϕ(z) (in which cases x∨y can be replaced

respectively by the Sat clause x ∨ z or x ∨ z̄).

This shows that if there is no edge xz and either xy or yz is light, then the 2-reduction

produces a light edge xz. If both xy and yz are light, ν(F ′) − ν(F) ≤ −a2 ≤ 0, while (once

again) if one of xy and yz is heavy, ν(F ′)− ν(F) ≤ −wh + we.

To summarize, no new constraint is imposed by 2-reductions. Also, if either of xy or yz is

heavy, then we have not merely that ν(F ′)− ν(F) ≤ 0 but that ν(F ′)− ν(F) ≤ −wh +we, and

we will take advantage of this later on. �

5.5.10 2-cut

Let {x, y} be a 2-cut isolating a set of vertices A, 2 ≤ |A| ≤ 10. (The 2-cut reduction extends

the 2-reduction, thought of as the case |A| = 1.) Similarly to the 1-cut above, for each of the

four cases ϕ : {x, y} → 0, 1 we may determine the optimal assignments of the vertices in A

and the corresponding optimal score; adding this score function to the original dyadic score sxy
gives an equivalent instance F ′ on variables V \ A. There is nothing new in the technicalities,

and we omit them.

In general, ν ′ − ν may be equated with the weight change from deleting the original edge

xy if any (guaranteed by (5.25) not to increase the measure), deleting all vertices in A with

their incident half edges (a change of −
∑

v∈A ad(v)), replacing one half–edge from each of x

102 Max 2-Sat, Max 2-CSP, and everything in between

and y into A with a single heavy edge between x and y (not affecting their degrees, and thus a

change of −we+wh), then doing half–edge reductions to remove any half–edges remaining from

other edges in {x, y} × A (guaranteed by reduction 5.5.6 not to increase the measure). Thus,

−
∑

v∈A ad(v) − we + wh ≤ −2a3 − we + wh, where the second inequality uses that |A| ≥ 2, all

vertices have degree ≥ 3 (a 2-reduction is preferred to this 2-cut reduction), and the values ai
are nondecreasing (see (5.26)). Thus we can assure that ν ′ − ν ≤ 0 by

−2a3 − we + wh ≤ 0,

which is already imposed by (5.22) and (5.17). �

5.6 Some Useful Tools

Before getting down to business, we remark that in treating disjunction and conjunction effi-

ciently, as well as decomposable functions (see reduction 5.5.5 and Remark 6), the only boolean

function our algorithm cannot treat efficiently is exclusive–or. The following remark is surely

well known.

Remark 7. The only non decomposable two-variable boolean functions are conjunction, dis-

junction, and exclusive–or.

Proof. A function s : {0, 1}2 7→ {0, 1} is characterized by a 2-by-2 table of 0s and 1s. If the

table has rank 1 (or 0), we can decompose s into monadic functions writing sxy(ϕ(x), ϕ(y)) =

sx(ϕ(x))+sy(ϕ(y)). A table with zero or four 1s is a constant function, trivially decomposable.

A table with one 1 is the function ϕ(x) ∧ ϕ(y), up to symmetries of the table and (corre-

spondingly) negations of one or both variables; similarly a table with three 1s is the function

ϕ(x) ∨ ϕ(y). In a table with two 1s, either the 1s share a row or column, in which case the

function is decomposable, or they lie on a diagonal, which is (up to symmetries and signs) the

function ϕ(x)⊕ ϕ(y).

The property of disjunction and conjunction on which we rely (besides having range {0, 1})
is that they are monotone in each variable. Obviously exclusive–or is not monotone, and it

seems that it cannot be accommodated by our methods.

5.6.1 Super 2-reduction

Suppose that y is of degree 2 and that its optimal color C ∈ {0, 1} is independent of the

colorings of its neighbors x and z, that is,

(∀D,E) sy(C) + syx(C,D) + syz(C,E) = max
C′∈{0,1}

sy(C
′) + syx(C

′, D) + syz(C
′, E). (5.28)

In that case, sy(ϕ(y)) can be replaced by sy(C) and incorporated into the niladic score,

sxy(ϕ(x), ϕ(y)) can be replaced by a monadic score s′x(ϕ(x)) := sxy(ϕ(x), C) and combined

5.6 Some Useful Tools 103

with the existing sx, and the same holds for syz, resulting in an instance with y and its incident

edges deleted. �

A super 2-reduction is better than a usual one since y is deleted, not just contracted.

We will commonly branch on a vertex u, setting ϕ(u) = 0 and ϕ(u) = 1 to obtain instances

F0 and F1, and solving both.

Lemma 5.5. After branching in a simplified instance F on a vertex u incident to a vertex y of

degree 3 whose other two incident edges xy and yz are both light, in at least one of the reduced

instances F0 or F1, y is subject to a super 2-reduction.

Proof. In the clauses represented by the light edges xy and yz, let b ∈ {−2, 0, 2} be the

number of occurrences of y minus the number of occurrences of ȳ. (As in reduction 5.5.9,

we capitalize on the fact that conjunction and disjunction are both elementwise monotone, and

that their scores are limited to {0, 1}.) Following the fixing of u to 0 or 1 and its elimination,

let biasy := sy(1)− sy(0). Given that F was simplified, the edge uy was not decomposable, so

by Remark 6 the value of biasy in F0 is unequal to its value in F1.

First consider the case b = 0. If biasy ≥ 1, the advantage from biasy for setting ϕ(y) = 1

rather than 0 is at least equal to the potential loss (at most 1) from the one negative occurrence

of y in xy and yz, so the assignment ϕ(y) = 1 is always optimal. Symmetrically, if biasy ≤ −1

we may set ϕ(y) = 0. The only case where we cannot assign y is when biasy = 0 = −b/2.

Next consider b = 2. (The case b = −2 is symmetric.) If biasy ≥ 0 we can fix ϕ(y) = 1,

while if biasy ≤ −2 we can fix ϕ(y) = 0. The only case where we cannot assign y is when

biasy = −1 = −b/2.

Thus, we may optimally assign y independent of the assignments of x and z unless biasy =

−b/2. Since biasy has different values in F0 and F1, in at least one case biasy 6= −b/2 and we

may super 2-reduce on y.

5.6.2 Branching on Vertices of Degree 5

Kulikov and Kutzkov [KK07] introduced a clever branching on vertices of degree 5. Although

we will not use it until we address instances of degree 5 in Section 5.10, we present it here since

the basic idea is the same one that went into our 2-reductions: that in some circumstances an

optimal assignment of a variable is predetermined. In addition to generalizing from degree 3

to degree 5 (from which the generalization to every degree is obvious), [KK07] also applies the

idea somewhat differently.

The presentation in [KK07] is specific to 2-Sat. Reading their result, it seems unbelievable

that it also applies to Max 2-CSP as long as the vertex being reduced upon has only light

incident edges (even if its neighbors are incident to heavy edges), but in fact the proof carries

over unchanged.

Lemma 5.6 (clause learning). In a Max 2-CSP instance F , let u be a variable of degree 5,

with light edges only, and neighbors v1, . . . , v5. Then there exist “preferred” colors Cu for u

and Ci for each neighbor vi such that a valid branching of F is into three instances: F1 with

104 Max 2-Sat, Max 2-CSP, and everything in between

ϕ(u) = Cu; F2 with ϕ(u) 6= Cu, ϕ(v1) = C1; and F3 with ϕ(u) 6= Cu, ϕ(v1) 6= C1, and ϕ(vi) = Ci
(∀i ∈ {2, 3, 4, 5}).

Proof. For any coloring ϕ : V → {0, 1}, let ϕ0 and ϕ1 assign colors 0 and 1 respectively to u,

but assign the same colors as ϕ to every other vertex. That is, ϕi(u) = i, and (∀x 6= u)

ϕi(x) = ϕ(x).

What we will prove is that for any assignment ϕ in which at least two neighbors of u do not

receive their preferred colors, s(ϕCu) ≥ s(ϕ): the assignment in which u receives its preferred

color has score at least as large as that in which it receives the other color, and thus we may

exclude the latter possibility in our search. (This may exclude some optimal solutions, but it is

also sure to retain an optimal solution; thus this trick will not work for counting, but does work

for optimization.) That is, if u and one neighbor (specifically, v1) do not receive their preferred

color, then we may assume that every other neighbor receives its preferred color.

It suffices to show the existence of colors Cu and Ci, i ∈ 1, . . . , 5, such that for any ϕ with

ϕ(i) 6= Ci for two values of i ∈ {1, . . . , 5}, we have s(ϕCu) ≥ s(ϕ).

Leave the immediate context behind for a moment, and consider any Max 2-CSP instance

F in which some variable u has only light edges, and in them appears N+
2 times positively

and N−2 times negatively. (As in reduction 5.5.9 and Lemma 5.5, we are using the fact that

conjunction and disjunction are elementwise monotone.) If ϕ(u) = 0, the total score s0 from

terms involving u satisfies

su(0) +N−2 ≤ s0 ≤ su(0) +N−2 +N+
2 ,

and if ϕ(u) = 1 the corresponding score s1 satisfies

su(1) +N+
2 ≤ s1 ≤ su(1) +N+

2 +N−2 .

From the second inequality in the first line and the first inequality in the second line, if su(1)−
su(0) ≥ N−2 then s1 ≥ s0, and for any coloring ϕ, s(ϕ1) ≥ s(ϕ0). Symmetrically, if su(0) −
su(1) ≥ N+

2 then ϕ0 always dominates ϕ1. Defining the bias

b := su(1)− su(0),

we may thus infer an optimal color for u if b−N−2 ≥ 0 or −b−N+
2 ≥ 0.

If u has degree 5, (b − N−2) + (−b − N+
2) = −N−2 − N+

2 = −5, and thus one of these

two parenthesized quantities must be at least −2.5, and by integrality at least −2. Given the

symmetry, without loss of generality suppose that b−N−2 ≥ −2. The preferred color for u will

be Cu = 1.

A small table shows that for any conjunctive or disjunctive clause involving u or ū and some

other variable vi (which without loss of generality we assume appears positively), there exists

a color Ci for vi (according to the case) such that assigning vi this color increases b−N−2 by 1

(either by increasing the bias and leaving N−2 unchanged, or leaving the bias unchanged and

decreasing N−2).

5.6 Some Useful Tools 105

original set ϕ(vi) = resulting change change change in

clause Ci = clause in b in N−2 b−N−2
(u ∨ vi) 0 (u) +1 0 +1

(u ∧ vi) 1 (u) +1 0 +1

(ū ∨ vi) 1 (1) 0 −1 +1

(ū ∧ vi) 0 (0) 0 −1 +1

Thus, starting from b − N−2 ≥ −2, assigning to any two neighbors of u their color Ci
results in an instance in which b − N−2 ≥ 0, and thus in which an optimal assignment for u is

ϕ(u) = Cu = 1. This proves the lemma.

5.6.3 A Lemma on 1-reductions

A half–edge reduction or 1-reduction is “good” if the target vertex has degree at lest 3, because

(as the weights will come out) the measure decrease due to ad−1 − ad is substantial for d ≥ 3,

but small (in fact, 0) for d = 1 and d = 2.

If for example we start with a simplified instance (in which all vertices must have degree at

least 3) and reduce on a vertex of degree d, deleting it and its incident half–edges, each of the

d remaining half–edges implies a good degree reduction on a neighboring vertex. However, if

we deleted several vertices, this might not be the case: if two deleted vertices had a common

neighbor of degree 3, its degree would be reduced from 3 to 2 by one half–edge reduction (good),

but then from 2 to 1 by the other (not good).

The following lemma allows us to argue that a certain number of good half–edge reductions

occur. The lemma played a helpful role in our thinking about the case analysis, but in the

presentation here we invoke it rarely: the cases dealt with are relatively simple, and explicit

arguments are about as easy as applying the lemma.

Note that for any half edge incident on a vertex v, we can substitute a full edge between v

and a newly introduced vertex v′: after performing a half–edge reduction on v in the first case

or a 1-reduction in the second, the same instance results. (Also, the measure increase of a1

when we add the degree-1 vertex and half–edge is canceled by the extra decrease for performing

a 1-reduction rather than a half–edge reduction.) For clarity of expression, the lemma is thus

stated in terms of graphs and 1-reductions, avoiding the awkward half edges.

Lemma 5.7. Let G be a graph with k degree-1 vertices, X = {x1, . . . , xk}. It is possible to

perform a series of 1-reductions in G where each vertex xi in X is either matched one–to–

one with a good 1-reduction (a 1-reduction on a vertex of degree 3 or more), or belongs to a

component of G containing at least one other vertex of X, where the total order of all such

components is at most 2k plus the number of degree-2 vertices.

In particular, if G is a connected graph then there are k good 1-reductions. By analogy with

the well–definedness of the 2-core of a graph, any series of 1-reductions should be equivalent,

but the weaker statement in the lemma suffices for our purposes.

106 Max 2-Sat, Max 2-CSP, and everything in between

Proof. The intuition is that each series of reductions originating at some xi ∈ X, after propa-

gating through a series of vertices of degree 2, terminates either at a vertex of degree 3 or more

(reducing its degree), establishing a matching between x and a good reduction, or at another

vertex xj ∈ X, in which case the path from xi to xj (or some more complex structure) is a

component.

Starting with i = 1, let us 1-reduce from xi as long as possible before moving on to xi+1.

That is, if we 1-reduce into a vertex of degree 2 we perform a new 1-reduction from that vertex,

terminating when we reach a vertex of degree 1 or degree 3 or more. Rather than deleting an

edge with a 1-reduction, imagine that the edges are originally black, and each reduced edge is

replaced by a red one (which of course is not available for further 1-reductions).

We assert that just before we start processing any xi, the red–edged graph has components

consisting of vertices all of whose edges are red (in which case this is also a component in

G itself), and components where all vertices but one component owner are all–red, and the

component owner has at least 1 red edge and at least 2 black edges. We prove this by induction

on i, with i = 1 being trivial.

Given that it is true before xi, we claim that: (1) as we reduce starting with xi, the reduction

sequence is uniquely determined; (2) in the red–edged component including xi, all vertices are

all–red except for a single active one; and (3) the sequence on xi ends when we reduce a vertex

that had at least 3 black edges (matching xi with this good reduction), or a vertex xj ∈ X, j > i

(in which case we will show that the red component including xi and xj is also a component of

G itself).

We prove these claims by induction on the step number, the base case again being trivial

(xi itself is active). If we reduce into a vertex v with two black edges (we will say it has black

degree 2), the next reduction takes us out its other black edge, leaving both red. If v was

of degree 2 it is added to xi’s red component; if not, it must have been a component owner

(these are the only mixed–color vertices), and we unite the vertex and its component with xi’s

component. If we reduce into a vertex v with at least 3 black edges, we match xi with the

good reduction on v, and vi owns xi’s red component. The only remaining possibility is that we

reduce into a vertex with 1 black edge, which can only be a degree-1 vertex xj (with j > i), as

there are no mixed–color vertices with 1 black edge. In this case we add xj to xi’s component,

and terminate the sequence of reductions for xi without a good reduction. However the red

component on xi now has no black edges on any of its vertices, and is thus a component in the

original black graph G.

Starting with the k vertices xi as initial red components, as we generate the component for

xi, the union of all components is expanded as we pass through (and use up) a (true) degree-2

vertex, left unchanged if we pass through a vertex of higher degree with black degree 2, expanded

as we enter a terminal all–black degree-3 vertex, and left unchanged if we terminate at another

vertex xj. Then, recalling that k is the number of degree-1 vertices in X and letting k2 be the

number of degree-2 vertices, the total number of vertices in the union of all components is at

most the number of seeds (k), plus the number of pass–throughs (at most k2), plus the number

of good terminals (at most k). In particular, we can partition X into the set of vertices with

good terminals in G, and the rest; the rest lie in components of G where the total size of these

5.7 Branching Reductions and Preference Order 107

components is ≤ 2k + k2.

5.7 Branching Reductions and Preference Order

Recall from Algorithm max2csp that if we have a nonempty simplified instance F , we will apply

a branching reduction to produce smaller instances F1, . . . , Fk, simplify each of them, and argue

that
∑k

i=1 2µ(Fi)−µ(F) ≤ 1 (inequality (5.8′)).

We apply branching reductions in a prescribed order of preference, starting with division

into components.

5.7.1 Split large components

If the constraint graph G of F has components G1 and G2 with at least C vertices each (C is

the same constant as in the simplification rule (5.5.4)), decompose F into the corresponding

instances F1 and F2. The decomposition is the obvious one: monadic score functions sx of F

are apportioned to F1 or F2 according to whether x is a vertex of G1 or G2, similarly for dyadic

score functions and edges xy, while we may apportion the niladic score function of F to F1,

setting that of F2 to 0.

It is clear that this is a valid reduction, but we must show that (5.8′) is satisfied. Note

that ν(F1) + ν(F2) = ν(F), and ν(Fi) ≥ Ca3 since Fi has at least C vertices, all degrees are

at least 3, and the ai are nondecreasing. Thus ν(F1) ≤ ν(F) − Ca3. Also, δ(F1) − δ(F) is

constant–bounded. Assuming that a3 > 0, then for C sufficiently large,

µ(F1)− µ(F) = ν(F1)− ν(F) + δ(F1)− δ(F)

≤ −Ca3 +
6∑
d=4

(Rd + Cd)

≤ −1.

The same is of course true for F2, giving 2µ(F1)−µ(F) + 2µ(F2)−µ(F) ≤ 2−1 + 2−1 = 1 as required.

The non strict inequality a3 ≥ 0 is established by (5.17), and if a3 = 0, a 3-regular (cubic)

instance would have measure 0, implying that we could solve it in polynomial time, which we

do not know how to do. Thus let us assume for a moment that

a3 > 0. (5.29)

This strict inequality (in fact a3 ≥ 1/7) will be implied by the constraints for branching rules

for cubic instances, constraint (5.31) for example. �

If F ’s constraint graph is connected the branching we apply depends on the degree of F , that

is, the degree of its highest–degree vertex. Although high–degree cases thus take precedence,

it is easier to discuss the low–degree cases first. Sections 5.8, 5.9, 5.10, and 5.11 detail the

branchings for (respectively) instances of degree 3, 4, 5, and 6. For a given degree, we present

the reductions in order of priority.

108 Max 2-Sat, Max 2-CSP, and everything in between

5.8 Cubic Instances

Many formulae are not subject to any of the simplification rules above nor to large–component

splitting. In this section we introduce further reductions so that for any formula F of maximum

degree at most 3 (which is to say, whose constraint graph has maximum degree at most 3),

some reduction can be applied.

If F has any vertex of degree strictly less than 3, we may apply the 0-, 1-, or 2-reductions

above. Henceforth, then, we assume that F is 3-regular (cubic).

The new reductions will generally be “atomic” in the sense that we will carry each through

to its stated completion, not checking at any intermediate stage whether an earlier simplification

or reduction rule can be applied.

We define

h3 := a3 − a2 (5.30)

to be the decrease of measure resulting from a half–edge reduction (reduction 5.5.6) on a vertex

of degree 3.

5.8.1 3-cut

There is a 3-cut X = {x1, x2, x3} isolating a set S of vertices, with 4 ≤ |S| ≤ 10. Each cut

vertex xi has at least 1 neighbor in V \ {S ∪X} (otherwise X without this vertex is a smaller

cut), and without loss of generality we may assume that either each cut vertex has 2 neighbors

in V \{S∪X}, or that |S| = 10. (If a cut vertex, say x1, has just one neighbor x′1 ∈ V \{S∪X},
then {x′1, x2, x3} is also a 3-cut, isolating the larger set S ∪ {x1}. Repeat until |S| = 10 or each

cut vertex has two neighbors in V \ {S ∪X}.)
With reference to Figure 5.3, let y1, y2, y3 ∈ S be the respective neighbors of x1, x2, and x3,

and let v1 and v2 be the other neighbors of x1. Note that y2 6= y3, or we should instead

apply a 2-cut reduction (reduction 5.5.10): cutting on {x1, y2} isolates the set S \ {y2}, and

3 ≤ |S \ {y2}| ≤ 9 satisfies the conditions of the 2-cut reduction.

We treat this case by branching on x1, resulting in new instances F1 and F2. In each we

apply a 2-cut on {y2, y3} (not {x2, x3}!), creating a possibly–heavy edge y2y3. We then 2-reduce

on y2 and y3 in turn to create an edge x2x3 which is heavy only if x2y2 and x3y3 were both

heavy. If |S| ≤ 10, the resulting instances satisfy

µ(F1), µ(F2) ≤ µ(F)− 5a3 − 2h3.

(Recall that for graphs of degree 3, µ and ν are identical.) The term −5a3 accounts for the

deletion of x1 and S (at least 5 vertices) with their incident half–edges. The term −2h3 accounts

for deletion of the “other halves” of the edges from x1 to V \{S∪X} and the degree decrease of

their incident vertices (see definition (5.30)); we are using the fact that v1 6= v2, and that X is

an independent set. There is no need for a term accounting for the deletion of the “other halves”

of the edges on x2 and x3 and the addition of the new edge x2x3: the new x2x3 is heavy only if

5.8 Cubic Instances 109

S

x1

x2

x3

y1

y2

y3

v1

v2

Figure 5.3: Illustration of a 3-cut, reduction 5.8.1

u

v1

v2

v3

x3

x4

Figure 5.4: Illustration for reduction 5.8.2, on a vertex with independent neighbors

both half–edges were heavy, so this change in measure is −1
2
w(x2y2)− 1

2
w(x3y3) +w(x2x3) ≤ 0,

and we are free to ignore it. (Since it may in fact be 0, there is also no gain including it.)

Constraint (5.8′) of Lemma 5.1 is thus assured if

2−5a3−2h3 + 2−5a3−2h3 ≤ 20 = 1,

that is it has a branching number of at most (see Section 2.6)

(5a3 + 2h3, 5a3 + 2h3). (5.31)

By similar reasoning, if |S| = 10 the branching number is at most

(11a3 + h3, 11a3 + h3).

By (5.29) this constraint is bound to hold “for a sufficiently large value of 10” (and since

h3 ≤ a3, for 10 itself this constraint is dominated by (5.31)), so we will disregard it. �

5.8.2 Vertex with Independent Neighbors

There is a vertex u such that N(u) is an independent set.

With reference to Figure 5.4, we reduce on u, fixing ϕ(u) to 0 and 1 to generate new instances

F0 and F1, each with constraint graph G[V \ {u}].
Let N1 := N(u) and N2 := N2(u). Let q be the number of vertices in N1 with a heavy edge

to N2, k0 the number of vertices in N1 subject to a super 2-reduction (deletion) in F0, and k1

the number subject to super 2-reduction in F1. By Lemma 5.5, each v ∈ N1 falls into at least

one of these cases, so q + k0 + k1 ≥ 3.

We will argue that µ(F)−µ(Fi) ≥ a3 +3h3 +q(wh−we)+2kih3. Deletion of u and reduction

110 Max 2-Sat, Max 2-CSP, and everything in between

of the degree of each of its neighbors immediately reduces the measure by a3 + 3h3 (more if any

edges incident to u were heavy). In Fi, first 2-reduce on the q vertices in N1 with heavy edges

(reducing the measure by a further q(wh − we)) and on the 3− q − ki vertices subject to only

plain 2-reductions (not increasing the measure). Note that each vertex in N2 still has degree 3.

Finally, reduce out the ki vertices which are set constant by a super 2-reduction, by deleting

their incident edges one by one. No vertex v in N2 has 3 neighbors in N1: if it did there would

remain only 3 other edges from N1 to N2, whence |N2| ≤ 4, N2 \ v would be a cut of size

≤ 3 isolating N1 ∪ {u, v}, and we would have applied a cut reduction. Thus, deletion of each

of the 2ki edges in N1 × N2 either reduces the degree of a vertex in N2 from 3 to 2 (a good

1-reduction, reducing the measure by h3), or creates a vertex of degree 1.

We wish to show that each degree-1 vertex in the graph G′ = G[V \ ({u} ∪N1)] must also

result in a good 1-reduction, giving the 2kih3 claimed. Note that |N2| must be 4, 5, or 6 (if

it were smaller we would have applied a cut reduction instead). If |N2| = 6 then every vertex

in N2 has degree 2 (in the graph G′) and there is nothing to prove. If |N2| = 5 then at most

one vertex in N2 has degree 1, and Lemma 5.7 implies that it results in a good 1-reduction.

If |N2| = 4, every degree-1 vertex in N2 also results in a good 1-reduction: If not, then by

Lemma 5.7 a set X of two or more vertices in N2 lies in a small component of G′, in which case

N2 \X is a cut of size 2 or less in the original constraint graph G, isolating {u} ∪N1 ∪X, and

we would have applied a cut reduction instead.

Thus, µ(F)− µ(Fi) ≥ a3 + 3h3 + q(wh −we) + 2kih3. By the Balance property on page 44,

the worst cases come if k0 = 0 and k1 = 3− q (or vice–versa). Thus, the worst case branching

numbers are

(∀q ∈ {0, 1, 2, 3})
(
a3 + 3h3 + q(wh − we),

a3 + 3h3 + q(wh − we) + 2(3− q)h3

)
. (5.32)

�

5.8.3 One Edge in G[N(u)]

Given that we are in this case rather than Case 5.8.2, no vertex of N(u) has an independent set

as neighborhood. Let N(u) = {v1, v2, v3} and suppose without loss of generality that v2v3 ∈ E.

Let N(v1) = {u, x1, x2}. Then, x1x2 ∈ E. To avoid a 3-cut (Case 5.8.1), |N2({u, v1})| = 4 (the

4 rightmost vertices depicted in Figure 5.5 are truly distinct).

After branching on u, in each of the two instances F0 and F1, first 2-reduce on v1, then on

x1, then continue with 2-reductions (the base case), or super 2-reductions (if possible), on v2

and v3. In the base case this results in the deletion of all 5 of these vertices with their incident

edges and the decrease of the degree of x2 to 2, for a measure decrease of 5a3 + h3 (vertex x2

will be 2-reduced, which does not increase the measure; see 5.5.9).

If v2v3 or v2x3 is heavy, then there is an extra measure decrease of wh − we beyond that of

5.8 Cubic Instances 111

u

v1

v2

v3

x1

x2

x3

x4

y1

y2

Figure 5.5: Illustration of reduction on a vertex with one edge in its neighborhood, Case 5.8.3

the base case, for a branching number of at most

(5a3 + h3 + wh − we, 5a3 + h3 + wh − we). (5.33)

Otherwise, v2v3 and v2x3 are both light, and we may super 2-reduce on v2 in either F0 or F1

(without loss of generality say F1). This reduces the degree of x3 from 3 to 2, and that of v3

from 2 to 1, setting up a 1-reduction on v3 that reduces the degree of x4 from 3 to 2. This gives

a branching number of at most

(5a3 + h3, 5a3 + 3h3). (5.34)

�

There are no further cases for cubic graphs. If for a vertex u there are 3 edges in G[N(u)]

then N [u] is an isolated component (a complete graph K4) and we apply component splitting.

If there are 2 edges in G[N(u)], then some v ∈ N(u) (either of the vertices having a neighbor

outside {u} ∪N(u)) has just 1 edge in G[N(v)] and we are back to Case 5.8.3.

For results on cubic and other instances, we refer to Theorem 5.4, Table 5.2, and the

discussion in Section 5.13.

5.8.4 Remark on Heavy Edges

If the original cubic instance is a pure 2-Sat formula, with no heavy edges, then (as we show

momentarily) any heavy edges introduced by the procedure we have described can immediately

be removed. Thus the “hybrid formula” concept gives no gain for cubic 2-Sat formulae, but

expands the scope to cubic Max 2-CSP, sacrifices nothing, and is useful for analyzing non cubic

instances. We now show how heavy edges introduced into a cubic 2-Sat formula immediately

disappear again.

In a graph with only light edges, the only two rules that create heavy edges are 2-reductions

and 2-cuts (and other reductions that apply these). A 2-reduction on v introduces a heavy edge

only if v’s neighbors x1 and x2 were already joined by an edge. In that case, though, x1 and x2

have their degrees reduced to 2 (at most). If the remaining neighbors y1 of x1 and y2 of x2 are

distinct, then 2-reducing on x1 gives a light edge x2y1: the heavy edge x1x2 is gone. Otherwise,

y1 = y2, and 2-reduction on x1 followed by 1-reduction on x2 deletes x1 and x2 and reduces the

112 Max 2-Sat, Max 2-CSP, and everything in between

S

x1

x2

→

x1

x2

Figure 5.6: 2-cut rule creates a heavy edge

S

x1

x2

x′1

x′2

→

x1

x2

x′1

x′2

→

x1

x2

Figure 5.7: 2-cut rule avoids creating a heavy edge

degree of y2 to 1, again leaving no heavy edge.

For a 2-cut on x1 and x2 isolating a set S, if there was an edge x1x2 then the cut reduction

reduces the degrees of both x1 and x2 to 2, and, just as above, we may 2-reduce on x1 to eliminate

the heavy edge. If x1 and x2 are nonadjacent and x1 has just 1 neighbor outside S, then again

a follow–up 2-reduction on x1 eliminates the heavy edge x1x2. Dismissing the symmetric case

for x2, all that remains is the case when x1 and x2 are not adjacent and each has 2 neighbors

outside S, and thus just 1 neighbor in S; see Figure 5.6.

The S-neighbors x′1 of x1 and x′2 of x2 must be distinct, or else we would have applied a

1-cut reduction on x′1. (This presumes that |S \ {x′1}| ≥ 2, but if it is 0 or 1, we would have

2-reduced on x′1 or 1-reduced on its S-neighbor — either of which is really a special case of a

1-cut reduction.)

Given that x′1 6= x′2, apply a 2-cut reduction not on x1 and x2 but instead on x′1 and x′2.

Following this with 2-reduction on x′1 and x′2 eliminates the heavy edge x′1x
′
2, giving a light edge

x1x2 instead; see Figure 5.7.

5.8.5 Solving the Programs

Every weight constraint we introduce is of the form
∑

i 2
Li ≤ 1, where the sum is finite and

each Li is some linear combination of weights. (Some constraints are simply of the form L ≤ 0,

but this can also be written as 2L ≤ 1.) This standard form (along with the objective of

minimizing we) can be provided, through an interface such as AMPL, as described in Section 2.4.

The convexity of the feasible region makes it relatively easy for a solver to return a provably

optimal solution: convex programs are much easier to solve than general ones or even the

quasiconvex programs like Eppstein’s [Epp06]. IPOPT solves the nonlinear program for our

general algorithm, to optimality, in a second or two on a typical laptop computer.

To ensure that our solutions are truly feasible, in the presence of finite numerical accuracy,

we replace the “1” in the right–hand side of each constraint with 1 − ε, fixing ε := 10−6;

this allows some margin for error. The values we show for the key parameters we and wh are

rounded up (pessimistically) from the higher–precision values returned by the solver, with the

5.9 Instances of Degree 4 113

other parameter values rounded fairly. Ideally we would also verify, in an unlimited–accuracy

tool such as Mathematica, that our rounded values satisfy the original “≤ 1” constraints.

Section 5.12 contains the final formulation of the mathematical program in AMPL.

5.9 Instances of Degree 4

Generalizing our earlier definition of h3 (5.30), we define for any d ≥ 3,

hd := min
3≤i≤d

{ai − ai−1}. (5.35)

This is the minimum possible decrease of measure resulting from a half–edge reduction (reduc-

tion 5.5.6) on a vertex of degree i with 3 ≤ i ≤ d. We will find that such deletions always occur

with the same sign in our nonlinear program — the larger hd, the weaker each constraint is —

and therefore the above definition can be expressed in our program by simple inequalities

(∀3 ≤ i ≤ d) hd ≤ ai − ai−1. (5.36)

We now consider a formula F of (maximum) degree 4. The algorithm chooses a vertex u

of degree 4 with — if possible — at least one neighbor of degree 3. The algorithm sets u to 0

and 1, simplifies each instance as much as possible (see Section 5.5), and recursively solves the

resulting instances F0 and F1.

The instances F0 and F1 are either 4-regular, of degree at most 3, or nonregular. By the

arguments presented in Section 5.3.6, the case where the degree of the graph decreases can be

safely ignored (the measure decrease C4 − C3 can be made as large as necessary).

5.9.1 4-regular

If F is 4-regular, first consider the case in which F0 and F1 are 4-regular. Since branching on u

decreases the degree of each vertex in N(u), and none of our reduction rules increases the degree

of a vertex, every vertex in N(u) must have been removed from F0 and F1 by simplification

rules.2 This gives a branching number of at most

(5a4, 5a4) . (5.37)

2There is an important subtlety here: the reduced–degree vertices are eliminated, not merely split
off into other components such that Fi has a 4-regular component and a component of degree 3
(although such an example shares with 4-regularity the salient property that no degree-4 vertex has
a degree-3 neighbor). By definition, the “4-regular case” we are considering at this point does not
include such an Fi, but it is worth thinking about what happens to an Fi which is not regular but has
regular components. No component of Fi is small (simplification 5.5.4 has been applied), so in the
recursive solution of Fi, Algorithm max2csp immediately applies large–component splitting (reduction
5.7.1). This reduces Fi to two connected instances, and is guaranteed to satisfy constraint (5.8′) (the
penalty for one instance’s being 4-regular is more than offset by its being much smaller than Fi).
Our machinery takes care of all of this automatically, but the example illustrates why some of the
machinery is needed.

114 Max 2-Sat, Max 2-CSP, and everything in between

If neither F0 nor F1 is 4-regular, then u is removed (a4), the degree of its neighbors decreases

(4h4), and we obtain an additional gain because F0 and F1 are not regular (R4). Thus, the

branching number is at most

(a4 + 4h4 +R4, a4 + 4h4 +R4) . (5.38)

If exactly one of F0 and F1 is 4-regular, we obtain a branching number of (5a4, a4 + 4h4 +R4).

By the dominance property on page 43, this constraint is weaker (no stronger) than (5.37) if

5a4 ≤ a4 + 4h4 +R4, and weaker than (5.38) if 5a4 > a4 + 4h4 +R4, so we may dispense with it.

5.9.2 4-nonregular

If F is not 4-regular, we may assume that u has at least one neighbor of degree 3. Let us denote

by pi the number degree-i neighbors of u. Thus, 1 ≤ p3 ≤ 4, and p3 + p4 = 4. Further, let us

partition the set P3 of degree-3 neighbors into those incident only to light edges, P ′3, and those

incident to at least one heavy edge, P ′′3 . Define p′3 := |P ′3| and p′′3 := |P ′′3 | (so p′3 + p′′3 = p3).

For each Fi (F0 and F1), branching on u removes u (for a measure decrease of a4, compared

with F). If Fi is not 4-regular, the degrees of the neighbors of u all decrease (
∑4

i=3 pihi). If

Fi is regular (−R4), all neighbors of u must have been eliminated as well (
∑4

i=3 piai).

We now argue about additional gains based on the values of p′3 and p′′3, starting with the

heavy edges incident on vertices in P ′′3 . Identify one heavy edge on each such vertex. If such

an edge is between two vertices in P ′′3 associate it with either one of them; otherwise associate

it with its unique endpoint in P ′′3 . This gives a set of at least dp′′3/2e vertices in P ′′3 each with

a distinct associated heavy edge, which we may think of as oriented out of that vertex. If

such an edge incident on v ∈ P ′′3 is also incident on u then it is deleted along with u, for an

additional measure reduction of wh − we we credit to v. This leaves a set of “out” edges that

may form paths or cycles. After deletion of u all the vertices involved have degree 2, so any

cycle is deleted as an isolated component, for a measure reduction of wh−we per vertex. Super

2-reducing on a vertex v deletes its outgoing edge, which we credit to v, and possibly also an

incoming heavy edge associated with a different v′ ∈ P ′′3 , which we credit to v′. Finally, if v is

2-reduced we consider its outgoing edge (not its other incident edge) to be contracted out along

with v, crediting this to v (and correctly resulting in a light edge if the other edge incident on v

was light, or a heavy one if it was heavy). This means that if the other edge incident to v was

a heavy edge out of a different v′ ∈ P ′′3 , then v′ still has an associated outgoing heavy edge. In

short, each of the dp′′3/2e vertices gets credited with the loss of a heavy edge, for an additional

measure reduction of at least dp′′3/2e (wh − we).
We say that we have a good degree reduction if the degree of a vertex of degree 3 or more

decreases by 1: for graphs of degree 4 this decreases the measure by at least h4. This measure

decrease comes in addition to what we have accounted for so far, unless Fi is regular and the

degree reduction is on a vertex in N(u) (since we have accounted for the deletion of those

vertices, counting their degree reductions as well would be double counting). We will show

that a certain number of additional–scoring degree reductions occur altogether, in F0 and F1

combined, as a function of p′3.

5.9 Instances of Degree 4 115

u

v1

v2

v3

v4

x1

x2

x3

Figure 5.8: The case p′3 = 2 may lead to just one good degree reduction outside N [u]. If both
super 2-reductions on v1 and v2 occur in the same branch (say F1), the degree of x1 is reduced.
The degrees of v3 and v4 become 2, so their edges are contracted eventually creating an edge
x2x3, which does not change the degree of x2 or x3. The heavy edge v3v4 gives a bonus measure
reduction of wh − we previously accounted for

u

v1

v2

v3

v4

x1

x2

x3

x4

Figure 5.9: The case p′3 = 3 (P ′3 = {v1, v2, v3}) may lead to just two good degree reductions

If p′3 = 1, super 2-reduction on the sole vertex in P ′3 is possible in at least one of F0 or F1

— without loss of generality say just F0 — and reduces the degrees of at least two neighbors.

If F0 is nonregular this gives a gain of 2h4, while if F0 is regular there may be no gain.

If p′3 = 2, then again if either vertex is super 2-reduced in a nonregular branch there is a

gain of at least 2h4. Otherwise, each vertex is super 2-reduced in a regular branch (both in one

branch, or in two different branches, as the case may be). At least one of the vertices has at

least one neighbor in N2 := N2(u), or else P3 \ P ′3 would be 2-cut. In whichever Fi the degree

of the neighbor is reduced, since Fi is regular the neighbor must eventually be deleted, for a

gain of at least a3. So there is either a gain of 2h4 in a nonregular branch or a gain of a3 in a

regular branch. (We cannot hope to replace a3 with 2a3: Figure 5.8 shows an example where

indeed only one good degree reduction occurs outside N [u].)

If p′3 = 3, again either there is a gain of 2h4 in a nonregular branch, or each super 2-reduction

occurs in a regular branch. The 3 vertices in P ′3 have at least 2 neighbors in N2, or else these

neighbors, along with P3 \ P ′3, would form a cut of size 2 or smaller. Each of these neighbors

has its degree reduced, and thus must get deleted from a regular Fi, for a gain of at least 2a3.

So there is either a gain of 2h4 in a nonregular branch, or a gain of 2a3 altogether in one or two

regular branches. (We cannot hope to claim 3h4 or 3a3, per the example in Figure 5.9.)

If p′3 = 4, we claim that in the two branches together there are at least 4 good degree

reductions on vertices in N2 and N3(u). Each contributes a gain of at least h4 if it is in

a nonregular branch, a3 in a regular branch. Each vertex in N2 undergoes a good degree

reduction in one branch or the other, so if |N2| ≥ 4 we are done. Since there can be no 2-cut,

116 Max 2-Sat, Max 2-CSP, and everything in between

we may otherwise assume that |N2| = 3. Since (in F) every vertex in N(u) has degree 3, there

is an even number of edges between N(u) and N2, thus there are at least 4 such edges. Since

each vertex in N2 has an edge from N(u), there must be two such edges incident on one vertex

x1 ∈ N2, and one edge each incident on the other vertices x2, x3 ∈ N2. Again we guaranteed

4 good degree reductions unless x1 has degree 3 and undergoes both of its reductions in one

branch (so that degree 3 to 2 is a good reduction, but 2 to 1 is not). In that case, though,

x1 has degree 1, its remaining neighbor must be in N3(u) (otherwise {x1, x2} is a 2-cut), and

1-reducing on x1 gives a good degree reduction on that neighbor. So there is a total gain of 4h4

in a nonregular branch and 4a3 in a regular branch.

By convexity, the elementwise average of two pairs of branching numbers is a constraint

dominated by one or the other, so it suffices to write down the extreme constraints, with all

the gain from super 2-reductions given to a single nonregular or regular branch.

Before counting the super 2-reduction gains, if Fi is nonregular the measure decrease µ(F)−
µ(Fi) is at least

∆r(p3, p
′′
3, p4) := a4 +

4∑
i=3

pihi +
⌈
p′′3
2

⌉
(wh − we), (5.39)

and if Fi is 4-regular, at least

∆r(p3, p
′′
3, p4) := a4 +

4∑
i=3

piai +
⌈
p′′3
2

⌉
(wh − we)−R4. (5.40)

The super 2-reductions give an additional gain, in a nonregular branch, of at least

gr :=
⌊
p′3+2

3

⌋
2h4, (5.41)

and in a regular branch, at least

gr :=
(⌊

p′3
2

⌋
+
⌊
p′3
3

⌋
+
⌊
p′3
4

⌋)
a3, (5.42)

where the tricky floor and ceiling expressions are just a way of writing an explicit expression

convenient for passing to the nonlinear solver. The constraints arising from branching on a

vertex of degree 4 with at least one neighbor of degree 3 are thus dominated by the following,

taken over p′3 + p′′3 + p4 = 4, with p4 ≤ 3 and p3 = p′3 + p′′3:

(∆r,∆r + gr), (5.43)

(∆r,∆r + gr), (5.44)

(∆r,∆r + gr), (5.45)

(∆r,∆r + gr). (5.46)

5.10 Instances of Degree 5 117

5.10 Instances of Degree 5

This section considers formulae of maximum degree 5. As an overview, if there is a 3-cut

isolating a set S with 6 or more vertices and S contains at least one vertex of degree 5, the

algorithm branches on any vertex in the cut. Otherwise, the algorithm chooses a vertex u of

degree 5 with — if possible — at least one neighbor of degree at most 4, and branches on u

either as was done in the degree-4 case, or using clause–learning branching (see Lemma 5.6).

We use clause learning when the neighbors of u have high degrees, because clause learning sets

many variables in N(u), and this is most effective when the degrees are large (since ai ≥ ai−1).

We use normal branching when the neighbors have low degrees, because setting u reduces their

degrees, and this is effective when the degrees are small (hi ≤ hi+1, with an additional bonus

in super 2-reductions for a degree-3 variable). (This is also why we always prefer to branch

on vertices of maximum degree with neighbors of low degree, and why the regular cases need

special attention.)

5.10.1 3-cut

There is a 3-cut C = {x1, x2, x3} isolating a set S of vertices such that 6 ≤ |S| ≤ 10 and S

contains at least one vertex of degree 5. Branching on the cut vertex x1 leaves constraint graphs

where {x2, x3} form a 2-cut. Thus S∪{x1} are removed from both resulting instances (a5+6a3),

a neighbor of x1 outside S ∪ C has its degree reduced (h5), a heavy edge x2x3 appears (in the

worst case) but at least 2 half–edges incident on x2 and x3 disappear (−wh+we). Additionally,

the resulting instances may become 5-regular (−R5). So, the branching number is at most(
a5 + 6a3 + h5 − wh + we −R5, a5 + 6a3 + h5 − wh + we −R5

)
. (5.47)

�

In light of reduction 5.10.1 we may henceforth assume that each degree-5 vertex u has

|N2(u)| ≥ 4.

5.10.2 5-regular

If every vertex has degree 5, the same analysis as for 4-regular instances (reduction 5.9.1,

constraints (5.37) and (5.38)) gives a branching number which is at most one of the following:

(6a5, 6a5), (5.48)

(a5 + 5h5 +R5, a5 + 5h5 +R5). (5.49)

�

Otherwise, let u be a degree-5 vertex with a minimum number of degree-5 neighbors, and

as usual let pi be the number of degree-i neighbors of u (since the instance is not regular,

p5 < 5). Let H := Kδ(u is incident to a heavy edge). Depending on the values of H and pi we

will use either the usual 2-way branching (reduction 5.10.3) or clause–learning 3-way branching

118 Max 2-Sat, Max 2-CSP, and everything in between

(reduction 5.10.4).

5.10.3 5-nonregular, 2-way Branching

In this case, H = 1 or p3 ≥ 1 or p5 ≤ 2.

We use the usual 2-way branching, setting u to 0 and to 1, and simplifying to obtain F0 and

F1. If Fi is not regular, the measure decrease µ(F)−µ(Fi) is at least a5+
∑5

i=3 pihi+H(wh−we),
and if Fi is 5-regular, it is at least a5 +

∑5
i=3 piai + H(wh − we) − R5. Thus if both branches

are regular the branching number is at most(
a5 +

∑5
i=3 piai +H(wh − we)−R5, a5 +

∑5
i=3 piai +H(wh − we)−R5

)
, (5.50)

and if one branch is regular and one nonregular, at most(
a5 +

∑5
i=3 piai +H(wh − we)−R5, a5 +

∑5
i=3 pihi +H(wh − we)

)
. (5.51)

If both branches are nonregular, we use that if p3 ≥ 1, any degree-3 neighbor of u either has

a heavy edge not incident to u, giving an additional measure reduction of at least wh − we, or

in at least one branch may be super 2-reduced, for a measure reduction of at least 2h5. (The

latter requires a justification we give explicitly, although Lemma 5.7 could be invoked. At the

start of the first super 2-reduction, every vertex has degree 2 or more. Each of the two “legs” of

the super 2-reduction propagates through a (possibly empty) chain of degree-2 vertices before

terminating either in a good degree reduction or by meeting a vertex that was reduced to degree

1 by the other leg. In the latter case all the vertices involved had degree 2, thus were neighbors

of u originally of degree 3; also, there must have been at least three of them to form a cycle,

and the remaining 2 or fewer vertices in N(u) contradict the assumption that F was simplified.)

Thus, the branching number is at most(
a5 +

∑5
i=3 pihi +H(wh − we) + Kδ(p3 ≥ 1)2h5, a5 +

∑5
i=3 pihi +H(wh − we)

)
or (5.52)

(
a5 +

∑5
i=3 pihi +H(wh − we) + Kδ(p3 ≥ 1)(wh − we),

a5 +
∑5

i=3 pihi +H(wh − we) + Kδ(p3 ≥ 1)(wh − we)
)
. (5.53)

�

5.10.4 5-nonregular, Clause Learning

In this case, H = 0 and p3 = 0 and p5 ∈ {3, 4}.
Let v be a degree 5 (degree 5 in G) neighbor of u with a minimum number of degree-5

neighbors in N2 := N2(u). The clause learning branching (see Lemma 5.6) will set u in the

first branch, u and v in the second branch, and all of N [u] in the third branch. In each of the

3 branches, the resulting instance could become 5-regular or not.

5.10 Instances of Degree 5 119

In the first branch, the measure of the instance decreases by at least

∆51 := min

{
a5 +

∑5
i=4 pihi (5-nonregular case),

a5 +
∑5

i=4 piai −R5 (5-regular case).
(5.54)

In the analysis of the second and third branches we distinguish between the case where v

has at most one neighbor of degree 5 in N2, and the case where v (and thus every degree-5

neighbor of u) has at least two neighbors of degree 5 in N2.

In the second branch, if v has at most one neighbor of degree 5 in N2, the measure of the

instance decreases by at least

∆1
52 := min

{
a5 +

∑5
i=4 pihi + a4 + 3h4 + h5 (5-nonregular case),

a5 +
∑5

i=4 piai −R5 (5-regular case).
(5.55)

(The degree reductions 3h4 + h5 from the nonregular case do not appear in the regular case

because they may pertain to the same vertices as the deletions
∑
piai.)

If v has at least two neighbors of degree 5 in N2, the measure decreases by at least

∆2
52 := min

{
a5 +

∑5
i=4 pihi + a4 + 4h5 (5-nonregular case),

a5 +
∑5

i=4 piai + 2a5 −R5 (5-regular case).
(5.56)

In the third branch, first take the case where v has at most one neighbor of degree 5 in N2.

Since |N2| ≥ 4, there are at least 4 good degree reductions on vertices in N2. If the instance

becomes regular, this implies a measure decrease of at least 4a3. If the instance remains

nonregular, this is a measure reduction of at least 4h5, and we now show that if p5 = 4 then

there is a fifth good degree reduction. We argue this just as the 4-nonregular case (Section 5.9.2)

with p′3 = 4; we could alternatively apply Lemma 5.7. If |N2| = 5 the desired 5h5 is immediate.

Otherwise, |N2| = 4, and the number of edges between N(u) and N2 is at least 4, and odd

(from p5 = 4 and p4 = 1, recalling that p3 = 0), so at least 5. At least one edge incident on

each vertex in N2 gives a good degree reduction, and we fail to get a fifth such reduction only

if the fifth edge is incident on a vertex x ∈ N2 of degree 3, leaving it with degree 1. But in that

case the remaining neighbor of x must be in N3(u) (otherwise N2 \x is a 3-cut, a contradiction

by reduction 5.10.1), and 1-reducing x gives the fifth good degree reduction. Thus the measure

decreases by at least

∆1
53 := min

{
a5 +

∑5
i=4 piai + 4h5 + Kδ(p5 = 4)h5 (5-nonregular case),

a5 +
∑5

i=4 piai + 4a3 −R5 (5-regular case).
(5.57)

Otherwise, in the third branch, v has at least two neighbors of degree 5 in N2. For the

regular case we simply note that each vertex in N2 has its degree reduced and must be deleted,

N2 has at least four vertices of which at least two are of degree 5, for a measure reduction

of at least 2a5 + 2a3. We now address the nonregular case. Letting P5 be the set of degree-5

vertices in N(u) (so |P5| = p5), by definition of v every vertex in P5 has at least two degree-5

120 Max 2-Sat, Max 2-CSP, and everything in between

neighbors in N2. Let R ⊆ N2 be the set of degree-5 vertices in N2 adjacent to P5, and let

E5 = E ∩ (P5 × R) be the set of edges between P5 and R. There is one last case distinction,

according to the value of p5. If p5 = 3 there are at least 6 good degree reductions: |E5| = 6,

each vertex in R has at most |P5| = 3 incident edges from E5, and thus each such incidence

results in a good degree reduction (the vertex degree is reduced at most from 5 to 4 to 3 to 2).

Here we have 6h5.

If p5 = 4 we claim that the good degree reductions amount to at least min{8h5, 5h5+h4+h3}.
By default the 8 edges in E5 all generate good degree reductions, with fewer only if some of

the degree-5 vertices in R have more than 3 incident edges from E5. The “degree spectrum”

on R is thus a partition of 8 (the number of incident edges) into |R| parts, where no part can

be larger than |P4| = 4. If the partition is 4 + 4 this means two reductions that are not good

(2h2), but then this implies that |R| = 2, and the other two vertices in N2 \ R also have their

degrees reduced, restoring the total of 8 good reductions. If the partition has exactly one 4, on

a vertex r ∈ R, then just one of the 8 degree reductions is not good, and the 7 good reductions

include those on r, thus giving a measure reduction of at least 5h5 + h4 + h3.

Considering the difference, which we will denote gp5=4, between these guaranteed measure

decreases and the guarantee of 6h5 when p5 = 3, we constrain

gp5=4 ≤ 8h5 − 6h5 = 2h5, (5.58)

gp5=4 ≤ (5h5 + h4 + h3)− 6h5 = −h5 + h4 + h3. (5.59)

and we obtain a measure reduction of at least

∆2
53 := min

{
a5 +

∑5
i=4 piai + 6h5 + Kδ(p4 = 1)gp5=4 (5-nonregular case),

a5 +
∑5

i=4 piai + 2a5 + 2a3 −R5 (5-regular case).
(5.60)

Wrapping up this reduction, the case that v has at most 1 degree-5 neighbor in N , or at

least two such neighbors, respectively impose the constraints (branching numbers)

(∆51,∆
1
52,∆

1
53) and (5.61)

(∆51,∆
2
52,∆

2
53). (5.62)

�

5.11 Instances of Degree 6

This section considers formulae of maximum degree 6. The algorithm chooses a vertex u of

degree 6 with — if possible — at least one neighbor of lower degree, and branches on u by

setting it to 0 and 1.

5.12 Mathematical Program in AMPL 121

5.11.1 6-regular

If every vertex has degree 6, the same analysis as for regular instances of degree 4 gives a

branching number which is at least one of the following:

(7a6, 7a6), (5.63)

(a6 + 6h6 +R6, a6 + 6h6 +R6). (5.64)

�

5.11.2 6-nonregular

Now, u has at least one neighbor of degree at most 5.

It is straightforward that the branching number is at least as large as one of the following

(only distinguishing if the instance becomes 6-regular or not):(
a6 +

6∑
i=3

pihi, a6 +
6∑
i=3

pihi

)
, (5.65)

(
a6 +

6∑
i=3

piai −R6, a6 +
6∑
i=3

piai −R6

)
. (5.66)

�

5.12 Mathematical Program in AMPL

maximum degree

param maxd integer >=3;

fraction of non simple clauses

param p;

param margin;

set DEGREES := 0..maxd;

weight for edges

var We >= 0;

weight for degree reductions from degree at most i

var h {DEGREES} >= 0;

vertex of degree i + i/2 surrounding half edges

var a {DEGREES};

weight for heavy edges

var Wh;

Regular weights

var R4 >= 0; (5.14)
var R5 >= 0; (5.14)
var R6 >= 0; (5.14)
additional degree reductions in the 3rd branch (nonregular)

122 Max 2-Sat, Max 2-CSP, and everything in between

of the clause learning branching for p5=4 vs p5=3

var nonreg53;

change in measure for the 3 branches

1st argument is the nb of deg-4 nbs of u

2nd argument distinguishes (if present) if v has at most 1 deg-5 nb

in N^2 (1) or at least 2 (2)

set TWO := 1..2;

var f1 {TWO};

var f2 {TWO,TWO};

var f3 {TWO,TWO};

var D4r {0..4, 0..4};

var D4n {0..4, 0..4};

var g4r {0..4};

var g4n {0..4};

analysis in terms of the number of edges

minimize Obj: (1-p)*We + p*Wh + 0*R4 + 0*R5 + 0*R6;

Some things we know

subject to Known: a[0] = 0; (5.24)

Constrain W values non-positive

subject to Wnonpos {d in DEGREES : d>=1}:

a[d] - d*We/2 <= 0 - margin; (5.16)(5.12)

a[] value positive

subject to MeasurePos {d in DEGREES : d>=1}:

a[d] >= 0 + margin; (5.17)

Intuition: weight for heavy edges >= weight for light edges

subject to HeavyEdge:

We - Wh <= 0 - margin; (5.19)

collapse parallel edges

subject to parallel {d in DEGREES : d >= 3}:

Wh - We - 2*a[d] + 2*a[d-1] <= 0 - margin; (5.22)

decomposable edges

subject to Decomposable {d in DEGREES : d >= 1}:

- a[d] + a[d-1] <= 0 - margin; (5.25)

constraints for the values of h[]

subject to hNotation {d in DEGREES, i in DEGREES : 3 <= i <= d}:

h[d] - a[i] + a[i-1] <= 0 - margin; (5.30)(5.35)

5.12 Mathematical Program in AMPL 123

#######################################

constraints for cubic

#######################################

3-cut

subject to Cut3:

2*2^(-5*a[3] - 2*h[3]) <= 1 - margin; (5.31)

Independent neighborhood

subject to Indep {q in 0..3}:

2^(-a[3] - 3*h[3] -q*(Wh-We)) + 2^(-a[3] -3*h[3] - q*(Wh-We) - 2*(3-q)*h[3])

<= 1 - margin; (5.32)

One edge in neighborhood

subject to OneEdge1:

2^(-5*a[3]-h[3]) + 2^(-5*a[3] -3*h[3]) <= 1 - margin; (5.34)
subject to OneEdge2:

2^(-5*a[3] -h[3] -Wh +We) + 2^(-5*a[3] -h[3] -Wh +We) <= 1 - margin; (5.33)

#######################################

constraints for degree 4

#######################################

4-regular

regular becomes nonregular

subject to Regular41:

2* 2^(-a[4] - 4*h[4]-R4) <= 1 - margin; (5.38)

regular becomes regular

subject to Regular42:

2* 2^(-5*a[4]) <= 1 - margin; (5.37)

4 non-regular

subject to 4nonregularBase {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

D4n[p3p,p3pp] = -a[4] -(p3p+p3pp)*h[3] -p4*h[4] -ceil(p3pp/2)*(Wh-We); (5.39)

subject to 4regularBase {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

D4r[p3p,p3pp] = -a[4] -(p3p+p3pp)*a[3] -p4*a[4] -ceil(p3pp/2)*(Wh-We) + R4; (5.40)

subject to 4nonregularBonus {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

g4n[p3p] = - floor((p3p+2)/3) * (2*h[4]); (5.41)

subject to 4regularBonus {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

124 Max 2-Sat, Max 2-CSP, and everything in between

g4r[p3p] = - (floor(p3p/2)+floor(p3p/3)+floor(p3p/4)) * a[3]; (5.42)

subject to Nonregular41 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

2^(D4n[p3p,p3pp]) + 2^(D4n[p3p,p3pp] + g4n[p3p])

<= 1 - margin; (5.43)

subject to Nonregular42 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

2^(D4n[p3p,p3pp]) + 2^(D4r[p3p,p3pp] + g4r[p3p])

<= 1 - margin; (5.44)

subject to Nonregular43 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

2^(D4r[p3p,p3pp]) + 2^(D4n[p3p,p3pp] + g4n[p3p])

<= 1 - margin; (5.45)

subject to Nonregular44 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

2^(D4r[p3p,p3pp]) + 2^(D4r[p3p,p3pp] + g4r[p3p])

<= 1 - margin; (5.46)

#######################################

constraints for degree 5

#######################################

3-cut for degree 5

subject to Cut5_3:

2* 2^(-a[5] - 6*a[3] + R5 +(Wh-We)) <= 1 - margin; (5.47)

5-regular

regular becomes nonregular

subject to Regular51:

2* 2^(-a[5] - 5*h[5]-R5) <= 1 - margin; (5.48)

regular stays regular

subject to Regular52:

2* 2^(-6*a[5]) <= 1 - margin; (5.49)

5 non-regular

clause learning

first branch

subject to Cf1 {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f1[p4] >= -a[5]-p4*h[4]-p5*h[5]; (5.54)
subject to Cf1reg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f1[p4] >= -a[5]-p4*a[4]-p5*a[5]+R5; (5.54)

5.12 Mathematical Program in AMPL 125

second branch, v has at most 1 deg-5 neighbor in N^2

subject to Cf2a {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,1] >= -a[5]-p4*h[4]-p5*h[5]-a[4]-3*h[4]-h[5]; (5.55)
subject to Cf2areg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,1] >= -a[5]-p4*a[4]-p5*a[5]+R5; (5.55)

second branch, v (and all other deg-5 nbs of u) has >=2 deg-5 nbs in N^2

subject to Cf2b {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,2] >= -a[5]-p4*h[4]-p5*h[5]-a[4]-4*h[5]; (5.56)
subject to Cf2breg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-2*a[3]+R5; (5.56)

additional degree reductions in the 3rd branch (nonregular) for p5=4 vs p5=3

subject to addDegRedNR53_1:

nonreg53 <= 2*h[5]; (5.58)
subject to addDegRedNR53_2:

nonreg53 <= h[4]+h[3]-h[5]; (5.59)

third branch, v has at most 1 deg-5 neighbor in N^2

subject to Cf3a {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,1] >= -a[5]-p4*a[4]-p5*a[5]-(4+((4*p4+5*p5-5) mod 2))*h[5]; (5.57)
subject to Cf3areg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,1] >= -a[5]-p4*a[4]-p5*a[5]-4*a[3]+R5; (5.57)

third branch, v (and all other deg-5 nbs of u) has >=2 deg-5 nbs in N^2

subject to Cf3b {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-6*h[5]-floor(p5/4)*nonreg53; (5.60)
subject to Cf3breg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-2*a[3]-2*a[5]+R5; (5.60)

the clause learning splitting

subject to Nonregular5cl {p4 in 1..2, nb5 in 1..2}:

2^(f1[p4]) + 2^(f2[p4,nb5]) + 2^(f3[p4,nb5]) <= 1 - margin; (5.61)(5.62)

2-way splitting

2-way splitting, non-reg in both branches, if p3>0, then additional h-e

subject to Nonregular51a {p3 in 0..5, p4 in 0..5, p5 in 0..4, H in 0..1:

p3+p4+p5=5 and ((H=1) or (p5 < 3 or p3>0))}:

2* 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We) -ceil(p3/5)*(Wh-We))

<= 1 - margin; (5.53)

2-way splitting, non-reg in both branches, if p3>0, then additional super-2

subject to Nonregular51b {p3 in 0..5, p4 in 0..5, p5 in 0..4, H in 0..1:

126 Max 2-Sat, Max 2-CSP, and everything in between

p3+p4+p5=5 and ((H=1) or (p5 < 3 or p3>0))}:

2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We) -ceil(p3/5)*2*h[5])

+ 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We))

<= 1 - margin; (5.52)

2-way splitting, becomes reg in both branches

subject to Nonregular52 {p3 in 0..5, p4 in 0..5, p5 in 0..4, H in 0..1:

p3+p4+p5=5 and ((H=1) or (p5 < 3 or p3>0))}:

2* 2^(-a[5] - p3*a[3] - p4*a[4] - p5*a[5] -H*(Wh-We) + R5)

<= 1 - margin; (5.50)

2-way splitting, becomes reg in 1 branch

subject to Nonregular52b {p3 in 0..5, p4 in 0..5, p5 in 0..4, H in 0..1:

p3+p4+p5=5 and ((H=1) or (p5 < 3 or p3>0))}:

2^(-a[5] - p3*a[3] - p4*a[4] - p5*a[5] -H*(Wh-We) + R5)

+ 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We))

<= 1 - margin; (5.50)

#######################################

constraints for degree 6

#######################################

6-regular

regular becomes nonregular

subject to Regular61:

2* 2^(-a[6] - 6*h[6]-R6) <= 1 - margin; (5.64)

regular stays regular

subject to Regular62:

2* 2^(-7*a[6]) <= 1 - margin; (5.63)

6 non-regular

nonregular stays nonregular

subject to Nonregular61 {p3 in 0..6, p4 in 0..6, p5 in 0..6, p6 in 0..5:

p3+p4+p5+p6=6}:

2* 2^(-a[6] - p6*h[6] - p5*h[5] - p4*h[4] - p3*h[3]) <= 1 - margin; (5.65)

nonregular becomes regular

subject to Nonregular62 {p3 in 0..6, p4 in 0..6, p5 in 0..6, p6 in 0..5:

p3+p4+p5+p6=6}:

2* 2^(-a[6] - p6*a[6] - p5*a[5] - p4*a[4] - p3*a[3] +R6) <= 1 - margin; (5.66)

5.13 Tuning the Bounds 127

5.13 Tuning the Bounds

For any values of we and wh satisfying the constraints we have set down, we have shown that

any Max 2-CSP instance F is solved in time O∗
(
2|E|we+|H|wh

)
.

For a given instance F , the running time bound is best for the feasible values of we and

wh which minimize |E|we + |H|wh. As usual taking |E| = (1 − p)m and |H| = pm, this is

equivalent to minimizing

(1− p)we + pwh, (5.67)

allowing us to obtain a 1-parameter family of running time bounds — pairs (we, wh) as a

function of p — tuned to a formula’s fraction of conjunctive and general 2-clauses.

Reiterating, if a formula’s “p” value is p(F) = |H|/(|E|+ |H|), and if minimizing (5.67) for

a given p gives a pair (we, wh)(p), then the optimal bound for formula F is the one given by

(we, wh)(p(F)), but for any (we, wh)(p), the running time bound O∗
(
2|E|we+|H|wh

)
is valid for

every formula F , even if p 6= p(F). This is simply because every such pair (we, wh) is a feasible

solution of the nonlinear program, even if it is not the optimal solution for the appropriate

objective function.

For cubic instances, minimizing (5.67) with p small gives we ≈ 0.10209 and wh ≈ 0.23127,

while minimizing with p close to 1 gives we = wh = 1/6 (the tight constraints are all linear, so

the solution is rational), matching the best known polynomial space running time for general

instances of Max 2-CSP (see [SS07]). It appears that the first result is obtained for all p ≤ 1/2

and the second for all p > 1/2.

For instances of degrees 4, 5, and 6 or more, the results of minimizing with various values

of p are shown in Table 5.2, and the most interesting of these is surely that of degree 6 or more

(the general case). Here, taking p small gives we ≈ 0.15820 and wh ≈ 0.31174. For instances

of Max 2-Sat this gives a running time bound of O∗ (20.1582m) or O∗
(
2m/6.321

)
, improving on

the best bound previously known, giving the same bound for mixtures of OR and AND clauses,

and giving nearly as good run times when a small fraction of arbitrary integer–weighted clauses

are mixed in. We observe that any p ≥ 0.29 leads to we = wh = 0.19 (as for cubic case with

p > 1/2, the tight constraints are linear, so the value is rational), matching the best known

bound (for polynomial space algorithms) of O∗ (20.19m) from [SS07]. Figure 5.10 shows the

values of we, wh, and the objective (1 − p)we + (p)wh, as a function of p. Numerically, the

values we and wh meet for some value of p between 0.2899 and 0.29.

5.14 Conclusion

We have seen in this chapter a fast algorithm for Max 2-Sat, Max 2-CSP, and hybrid Max

2-Sat/Max 2-CSP instances. A rigorous analysis without much assumptions on the measure

enabled us to establish a family of running time bounds, where the tight cases often depend on

the parameter p defining this family. To draw the graph of Figure 5.10, our convex program

with close to 500 constraints was solved 3500 times: p ranges from 0 to 0.35 and the values have

128 Max 2-Sat, Max 2-CSP, and everything in between

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

p

Figure 5.10: Plot of we (red), wh (green), and (1 − p)we + pwh (blue) versus the fraction p of
non–simple 2-clauses. The three values are equal (and exactly 0.19) for p > 0.29. Both we and
wh appear to be piecewise constant: the resolution of the graph is in p increments of 0.0001,
and all the small changes are meaningful

been computed by p increments of 0.0001. To perform these computations was only a matter

of minutes, which shows the power of the convex programming method to optimize a measure.

If we only look at Max 2-Sat, our main improvement comes from the fact that we use

powerful reductions taking us outside the class of Max 2-Sat instances, account for these

by an appropriate measure and carefully analyze the algorithm. The algorithm we presented

sometimes splits off a part of the graph when it finds a 2-cut in the graph by introducing a

CSP–clause between the two vertices of the 2-cut. CSP clauses are a generalization concerning

the type of clauses. It would be interesting to know if a generalization concerning the size of the

clauses would be useful. One could, for example, split off a part of the graph that is separated

from the rest of the graph by a 3-cut and introduce a CSP clause involving the 3 vertices of the

3-cut.

Chapter 6
Treewidth Bounds

Equations are more important to me, because
politics is for the present, but an equation is
something for eternity.

Albert Einstein

Chapters 7 and 8 present algorithms combining branching algorithms and tree- or pathwidth

based algorithms in different ways. During the execution of the algorithms, tree decompositions

need to be computed. The smaller the width of these decompositions, the faster the dynamic

programming algorithms using these decompositions perform. In this section, we discuss bounds

on the tree decompositions of graphs according to the degrees of their vertices. These bounds

are proved constructively and imply polynomial time procedures for finding decompositions

whose widths do not exceed the respective bounds.

Definition 6.1. A tree decomposition of a graph G = (V,E) is a pair ({Xi : i ∈ I}, T) where

each Xi, i ∈ I, is a subset of V , called a bag and T is a tree with elements of I as nodes such

that

1.
⋃
i∈I Xi = V ,

2. for all uv ∈ E, there exists i ∈ I such that {u, v} ⊆ Xi, and

3. for all i, j, k ∈ I, if j is on the path from i to k in T then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition is maxi∈I |Xi| − 1. The treewidth of a graph G is the

minimum width over all its tree decompositions and it is denoted tw(G). A tree decomposition

({Xi : i ∈ I}, T) is a path decomposition if T is a path. The pathwidth of a graph G is the

minimum width over all its path decompositions and it is denoted pw(G). A tree decomposition

(respectively, a path decomposition) is called optimal if its width is tw(G) (respectively pw(G)).

Algorithms using tree decompositions often need nice tree decompositions.

Definition 6.2 (Nice tree decomposition). A nice tree decomposition ({Xi : i ∈ I}, T) is a tree

decomposition satisfying the following properties:

130 Treewidth Bounds

1. every node of T has at most two children;

2. if a node i has two children j and k, then Xi = Xj = Xk (i is called a Join Node);

3. if a node i has one child j, then either

(a) |Xi| = |Xj|+ 1 and Xj ⊂ Xi (i is called an Insert Node), or

(b) |Xi| = |Xj| − 1 and Xi ⊂ Xj (i is called a Forget Node).

That a tree decomposition of a graph G can be transformed in linear time into a nice tree

decomposition of the same width and with at most 4 times as many bags has been shown by

Kloks.

Theorem 6.3 ([Klo94]). For a constant k, given a tree decomposition of a graph G of width k

and N bags, one can find a nice tree decomposition of G of width k with at most 4N bags in

O(n) time, where n is the number of vertices of G.

The graph parameters treewidth and pathwidth were introduced by Robertson and Seymour

in their seminal work on graph minors [RS83, RS86]. They play nowadays a central role in

algorithmic graph theory as many NP–hard problems become polynomial time solvable on

graphs of small treewidth. For a survey on treewidth based (sub)exponential time algorithms

we refer to [FGK05].

6.1 Bounds on the Pathwidth of Sparse Graphs

In this section we develop several upper bounds on the pathwidth of sparse graphs. We need

the following known bound on the pathwidth of graphs with maximum degree 3 to prove the

two lemmata of this section. It has been proved by Fomin and Høie based on the work of

Monien and Preis on the bisection width of 3–regular graphs [MP06].

Theorem 6.4 ([FH06]). For any ε > 0, there exists an integer nε such that for every graph G

with n > nε vertices and maximum degree at most 3, pw(G) ≤ (1/6 + ε)n. Moreover, a path

decomposition of the corresponding width can be constructed in polynomial time.

Using Theorem 6.4 we prove the following bound for general graphs.

Lemma 6.5. For any ε > 0, there exists an integer nε such that for every graph G with n > nε
vertices,

pw(G) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6} and n≥7 is the number

of vertices of degree at least 7. Moreover, a path decomposition of the corresponding width can

be constructed in polynomial time.

6.1 Bounds on the Pathwidth of Sparse Graphs 131

Proof. Let G = (V,E) be a graph on n vertices. It is well known (see for example [Bod98]) that

if the treewidth of a graph is at least 2, then contracting edges incident to vertices of degree 1

and 2 does not change the treewidth of a graph and thus increases its pathwidth by at most a

logarithmic factor, as shown in [KS93]. So we assume that G has no vertices of degree 1 and

2 (otherwise we contract the corresponding edges). Furthermore, adding loops and duplicating

edges does not increase the pathwidth of a graph, so we may at all times assume that the graph

is simple.

First, we prove the lemma for the special case where the maximum degree of G is at most

4 by induction on the number n4 of vertices of degree 4 in G. If n4 = 0, then ∆(G) ≤ 3 and we

apply Theorem 6.4. Let us assume that the lemma holds for graphs with at most n4 − 1 ≥ 0

and prove it for graphs with n4 vertices of degree 4. Let v ∈ V be a vertex of degree 4. Let

i ∈ {0, . . . , 4} be the number of degree 3 neighbors of v. As every neighbor of v has degree at

least 3, v has 4 − i neighbors of degree 4. Adding v to every bag of the tree decomposition

increases the width of this tree decomposition by 1. Thus,

pw(G) ≤ pw(G \ v) + 1

≤ n3 − i+ (4− i)
6

+
n4 − 1− (4− i)

3
+ ε(n− 1) + 1

≤ n3

6
+
n4

3
+ εn .

Now, suppose that the maximum degree of G is at most 5. The case where the graph or some

of its connected components is 5-regular needs special consideration. Note that the pathwidth

of a graph equals the maximum pathwidth of all its connected components, so it is sufficient to

prove the bound for the connected component of a graph that has largest pathwidth (or for all

connected components separately). 5-regular connected components may occur in the following

situations:

(a) the input graph is 5-regular or has 5-regular connected components,

(b) the removal of a vertex of degree at least 6 led to a graph with one or more 5-regular

components,

(c) the removal of a vertex of degree 5 produced 5-regular connected components by splitting

off all vertices of degree at most 4 into different connected components, and

(d) the removal of a vertex of degree 5 produced a 5-regular graph (by contracting edges

incident to vertices of degree 1 and 2).

We have already proved the base case where n5 = 0. Let us assume that the lemma holds

for all graphs with at most n5 − 1 vertices of degree 5, no vertices of degree at least 6 and at

least one vertex of degree at most 4. The case when the graph is 5-regular is considered later.

Let v be a vertex of degree 5 with at least one neighbor of degree at most 4. Let G′ be the

connected component of largest pathwidth of the graph obtained from G − v by contracting

edges incident to vertices of degree 1 and 2. Let us first assume that G′ is not 5-regular. It is

132 Treewidth Bounds

clear that pw(G) ≤ pw(G \ v) + 1. For j ∈ {3, . . . , 5} we denote by mj the number of degree

j neighbors of v. By the induction assumption,

pw(G) ≤ pw(G \ v) + 1

≤ n3 −m3 +m4

6
+
n4 −m4 +m5

3
+

13

30
(n5 − 1−m5) + 1 + ε(n− 1).

For all possible values of (m3,m4,m5), we have that

−m3 +m4

6
+
−m4 +m5

3
+

13

30
(−1−m5) + 1 ≤ 0.

(Equality is obtained when (m3,m4,m5) = (0, 1, 4) which corresponds to the case when v has

four neighbors of degree 5 and one of degree 4.) Thus,

pw(G) ≤ n3

6
+
n4

3
+

13

30
n5 + εn.

If the graph G′ is 5-regular, then all neighbors of v in G are removed either (d) by contracting

edges incident to vertices of degree 1 and 2 or (c) by splitting off vertices of degree at most 4 into

a different connected component. In the worst case, all neighbors of v are of degree 3 in this case.

Let u be a vertex of degree 5 in G′. Since G′ \ u is not 5-regular and pw(G) ≤ pw(G′ \ u) + 2,

we have that

pw(G) ≤ pw(G′ \ u) + 2

≤ 2 +
n3 − 5

6
+
n4 + 5

3
+

13

30
(n5 − 7) + ε(n− 2)

<
n3

6
+
n4

3
+

13

30
n5 + εn.

Thus the lemma holds for all non 5-regular graphs. Since the removal of one vertex (for cases

(a) and (b)) changes the pathwidth by an additive factor of at most 1, for sufficiently large n

this additive factor is dominated by εn, and we conclude that the lemma holds for 5-regular

graphs as well.

Using similar arguments one can proceed with the vertices of degree 6 (we skip the proof

here). The critical case here is when a vertex of degree 6 has 5 neighbors of degree 6 and one

neighbor of degree 5.

For vertices of degree at least 7 we just use the fact that adding a vertex to a graph can

increase its pathwidth by at most one.

More accurate bounds for vertices of degree at least 7 can be obtained by a computer

program going through all possible cases. The obtained values are reported in Table 6.1.

As a corollary, we get the following bound which was proved in [KMRR09] and [SS07].

Corollary 6.6. For any ε > 0, there exists an integer nε such that for every graph G with

n > nε vertices and m edges, pw(G) ≤ 13m/75 + εn.

6.1 Bounds on the Pathwidth of Sparse Graphs 133

d βd d βd d βd
3 0.1667 8 0.6163 13 0.7514
4 0.3334 9 0.6538 14 0.7678
5 0.4334 10 0.6847 15 0.7822
6 0.5112 11 0.7105 16 0.7949
7 0.5699 12 0.7325 17 0.8062

Table 6.1: Numerically obtained constants βd, 3 ≤ d ≤ 17, such that for any ε > 0, there exists
an integer nε such that for every graph G with n > nε vertices, pw(G) ≤

∑17
d=3 βdnd+n≥18 +εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 17} and n≥18 is the number
of vertices of degree at least 18

Proof. First, suppose G has maximum degree at most 5. Then every edge in G contributes at

most

max
3≤d≤5

{
2βd
d

}
to the pathwidth of G, where β3 = 1/6, β4 = 1/3, β5 = 13/30 are the values from Lemma 6.5.

The maximum is obtained for d = 5 and is 13/75. Thus, the result follows for graphs of

maximum degree at most 5.

Finally, if G has a vertex v of degree at least 6, then we use induction on the number of

vertices of degree at least 6. The base case has already been proved and the inductive argument

is as follows:

pw(G) ≤ pw(G \ v) + 1 ≤ 13(m− 6)/75 + 1 < 13m/75.

The following result bounds the pathwidth of a graph in terms of both the number of vertices

and the number of edges and is very useful when we only have information about the average

degree of a graph with at most 2n edges.

Lemma 6.7. For any ε > 0, there exists an integer nε such that for every connected graph G

with n > nε vertices and m = βn edges, 1 ≤ β ≤ 2, the pathwidth of G is at most (m−n)/3+εn.

Moreover, a path decomposition of the corresponding width can be constructed in polynomial

time.

Proof. First we show the result assuming that the maximum degree ∆(G) of the graph is

bounded by 3, then we extend this result to the general case.

Let n2 be the number of vertices of degree 2 in G and n3 be the number of vertices of degree

3 in G. Since the contraction of an edge incident to a vertex of degree one does not change the

treewidth of a graph, we assume that n2 = n− n3. Thus n2 + 3
2
n3 = βn. Since n3 = 2(β − 1)n,

134 Treewidth Bounds

e c d

a b
a
b

c

d e

Figure 6.1: A circle model and the corresponding circle graph

by Lemma 6.5 we have that

pw(G) ≤ 1

6
(2β − 2)n+ εn

=
β − 1

3
n+ εn =

m− n
3

+ εn.

Now we extend the result without any assumptions on the degrees of the vertices of G. We

show this by induction on n≥4, the number of vertices of degree at least 4. We have already

shown that the lemma holds if n≥4 = 0. Let us assume that for every ε > 0 there exists nε such

that for every graph with at least nε vertices and at most n≥4 − 1 vertices of degree at least

4 the lemma holds. Let v ∈ V be a vertex of degree at least 4. Observe that G \ v has n − 1

vertices and at most m− 4 ≤ β(n− 1) edges. Now we have

pw(G) ≤ pw(G \ v) + 1 ≤ (m− 4)− (n− 1)

3
+ 1 + ε(n− 1)

≤ m− n
3

+ εn.

6.2 Bound on the Treewidth of Circle Graphs

In this section, we present a bound on the treewidth of circle graphs in terms of their maximum

degree: tw(G) ≤ 4∆(G) for every circle graph G.

Definition 6.8. A circle graph is an intersection graph of chords in a circle. More precisely, G

is a circle graph if there is a circle with a collection of chords, such that one can associate in a

one-to-one manner a chord to each vertex of G such that two vertices are adjacent in G if and

only if the corresponding chords have a nonempty intersection. The circle and all the chords

are called a circle model of the graph.

We refer to Figure 6.1 for an example of a circle graph and its corresponding circle model.

Our approach is based on the fundamental ideas of Kloks’ algorithm to compute the

treewidth of circle graphs [Klo96]. We start with a brief summary of this algorithm. Con-

sider the circle model of a circle graph G. Go around the circle and place a new point (a

so-called scanpoint) between every two consecutive end points of chords. The treewidth of a

6.2 Bound on the Treewidth of Circle Graphs 135

not parallel not parallel parallel

Figure 6.2: Examples of parallel and non parallel sets of chords

circle graph can be computed by considering all possible triangulations of the polygon P formed

by the convex hull of these scanpoints. The weight of a triangle in this triangulation is the

number of chords in the circle model that cross this triangle. The weight of triangulation T is

the maximum weight of a triangle in T . The treewidth of the graph is the minimum weight

minus one over all triangulations T of P . To find an optimal tree decomposition of G, the

algorithm in [Klo96] uses dynamic programming to compute a minimum weight triangulation

of P .

Theorem 6.9 ([Klo96]). There exists an O(n3) algorithm to compute the treewidth of circle

graphs, that also computes an optimal tree decomposition.

We rely on the following technical definitions in our construction of a tree decomposition of

width at most 4∆(G) for each circle graph G. The construction will be given in the proof of

Theorem 6.13.

Definition 6.10. A scanline s̃ = 〈ã, b̃〉 is a chord connecting two scanpoints ã and b̃.

To avoid confusion, we call vertex chords the chords of the circle model that represent the

vertices of the corresponding circle graph. Scanlines are chords as defined above and the general

term chord refers to both scanlines and vertex chords. To emphasize the difference between

scanlines and vertex chords we use different notations: A vertex chord v connecting two end

points c and d in the circle model of the graph is denoted v = [c, d]. This notation is also used if

we consider chords in general. We adapt the standard convention that two vertex chords never

intersect on the circle. Moreover, we say that two chords with empty intersection or intersecting

in exactly one point on the circle (scanpoint) are non-crossing.

Definition 6.11. Let c1 and c2 be two non-crossing chords. A chord c is between c1 and c2 if

every path from an end point of c1 to an end point of c2 along the circle passes through an end

point of c.

Definition 6.12. A set C of chords is parallel if and only if

(i) the chords of C are non-crossing, and

(ii) if |C| > 2, then for every subset of three chords in C, one of these chords is between the

other two.

136 Treewidth Bounds

Algorithm TriangCircle(circle model of a graph G)
Input : A circle model of a graph G.
Output: A triangulation of weight at most 4∆(G) of the polygon defined by the

scanpoints of this circle model.

Choose any vertex chord v in the circle model of G
S ← ScanChord(∅, v)
return ParaCuts(S)

Figure 6.3: Algorithm TriangCircle computing a triangulation of weight at most 4∆(G)
of any circle graph G

A set S of scanlines is maximal parallel if there exists no vertex chord v such that S ∪ {v}
is parallel. Given a maximal parallel set of scanlines S, consider the maximal size subpolygons

of P that do not properly intersect any scanline of S (but there may be scanlines of S on their

boundaries). For such a subpolygon of P , either one or two edges are scanlines of S. We say

that these polygons are delimited by one or two scanlines of S and we call outer polygon Ps̃
with respect to S such a polygon delimited by one scanline s̃ ∈ S and inner polygon Ps̃1,s̃2 with

respect to S such a polygon that is delimited by two scanlines s̃1, s̃2 ∈ S and contains at least

one scanpoint (otherwise, it is already triangulated). The inner and outer polygons are defined

with respect to a maximal parallel set of scanlines S, but we allow ourselves to not state this

set of scanlines explicitly if it is clear from the context.

The following theorem shows that the treewidth tw(G) of every circle graph G can be upper

bounded by a linear function of the maximum degree ∆(G) of the graph.

The idea for the proof is to construct an algorithm that computes a triangulation of P (the

triangulation is not necessarily optimal) and to prove that each triangle of this triangulation

has weight at most 4∆(G). Before presenting the algorithm in detail, let us mention some of its

major ideas. The algorithm separates P into “slices” by scanning some appropriately chosen

vertex chords in the circle model of the graph, where a vertex chord v is scanned by adding

two sharp triangles to the partly constructed triangulation: two scanlines parallel to v and one

scanline crossing v to form two triangles. The slices are made thinner and thinner by adding

scanlines to the partly constructed triangulation until no slice can be cut into a pair of slices by

scanning a vertex chord any more, and this procedure gives a maximal parallel set of scanlines.

When triangulating the “middle part” of any slice (a convex polygon formed by the endpoints

of the two delimiting scanlines and possibly other scanpoints on one side of the slice), we use

the property that no vertex chord is parallel to the two scanlines delimiting the slice to show

that the algorithm will not create triangles with a weight exceeding 4∆(G). The borders of

the slices are triangulated recursively by first separating them into slices (in the perpendicular

orientation of the previous slices) by scanning some chords and processing the resulting slices

similarly.

The most interesting procedure of our algorithm is TriangInner, which is also crucial for

our upper bound 4∆(G).

Theorem 6.13. For every circle graph G, tw(G) ≤ 4∆(G).

6.2 Bound on the Treewidth of Circle Graphs 137

Procedure ScanChord(S, v = [a, b])
Input : A set of scanlines S and a vertex chord v = [a, b] such that no scanline of S

crosses v.
Output: A set of scanlines triangulating the polygon defined by the neighboring

scanpoints of the end points of v.

Let c̃ and c̃′ (respectively d̃ and d̃′) be the two scanpoints closest to a (respectively b)
such that the order of the points on the circle is c̃, a, c̃′, d̃′, b, d̃
Let s̃1 := 〈c̃, d̃〉, s̃2 := 〈c̃′, d̃′〉 and s̃3 := 〈c̃, d̃′〉
if c̃ = d̃ (or c̃′ = d̃′) then

X ← {s̃2} (or {s̃1})
else

X ← {s̃1, s̃2, s̃3}
return X

Figure 6.4: Procedure ScanChord producing a set of scanlines triangulating the polygon
defined by the neighboring scanpoints of a vertex chord

a

b
d̃

c̃
d̃′

c̃′

Figure 6.5: Illustration of ScanChord(S, v = [a, b])

Proof. The theorem clearly holds for edgeless graphs. Let G be a circle graph with at least one

edge and P be the polygon as previously described. We construct a triangulation of P such

that every triangle has weight at most 4∆, that is it intersects at most 4∆ vertex chords, and

therefore the corresponding tree decomposition has width at most 4∆− 1.

Notice that by the definition of a circle graph, every vertex chord intersects at most ∆ other

vertex chords. The triangulation of the polygon P is obtained by constructing the corresponding

set of scanlines S which is explained by the following procedures. Along with the description of

our algorithm, we also analyze the number of vertex chords that cross each triangle and show

that it is at most 4∆.

We say that a procedure is valid if it does not create triangles with weight higher than 4∆

and if it does not create crossing scanlines.

The validity of Algorithm TriangCircle depends on the validity of the procedures Scan-

Chord and ParaCuts. Note that, initially, no scanline crosses v, which is a condition for

ScanChord. Moreover ScanChord produces a parallel set of scanlines, which is a condition

for ParaCuts.

The procedure ScanChord returns a set X of one or three scanlines. They form at most

two triangles: c̃, d̃, d̃′ and c̃, d̃′, c̃′. Each of them intersects at most ∆ + 1 vertex chords: v and

the vertex chords crossing v. Furthermore, at most ∆ vertex chords cross s̃1 and s̃2, precisely

the vertex chords that cross v. The scanlines of X do not intersect any scanline of S as any

138 Treewidth Bounds

Procedure ParaCuts(S)
Input : A set of parallel scanlines S.
Output: A triangulation of weight at most 4∆(G) of the polygon defined by the

scanpoints of the circle model.

while S is not maximal parallel do
Choose a vertex chord v such that S ∪ {v} is parallel
S ← S ∪ ScanChord(S, v)

Let s̃1 and s̃2 be the scanlines delimiting the two outer polygons
S ← S ∪TriangOuter(S, s̃1) ∪TriangOuter(S, s̃2)
foreach inner polygon Pt̃1,t̃2 do

S ← S ∪TriangInner(S, t̃1, t̃2)

return S

Figure 6.6: Procedure ParaCuts computing a triangulation of weight at most 4∆(G) of
the polygon defined by the scanpoints of the circle model

outer

inner

inner

inner

outer

Figure 6.7: Illustration of ParaCuts(S)

scanline intersecting a scanline of X intersects also v.

In the procedure ParaCuts, the notions of inner and outer polygons are used with respect

to S (see Figure 6.7). In the while-loop, the chosen vertex chord v does not cross a scanline

of S since S ∪ {v} is required to be parallel. Thus, when the procedure ScanChord is called,

its conditions are satisfied. After the while-loop, S is maximal parallel. Every vertex chord

intersecting an outer polygon crosses therefore the scanline delimiting this outer polygon, and

there is no vertex chord between two scanlines delimiting an inner polygon, which are necessary

conditions for TriangOuter and TriangInner. Moreover, at most ∆ vertex chords cross each

of the delimiting scanlines and no scanline of S intersects the inner and outer polygons.

In the procedure TriangOuter, at most 2∆ vertex chords intersect the outer polygon Ps̃.
So, any triangulation of Ps̃ produces triangles with weight at most 2∆. As the procedure

produces a triangulation of Ps̃, it is valid.

Consider the input of the procedure TriangInner. There are at most 3∆ vertex chords

inside the quadrilateral ã1, b̃1, b̃2, ã2 since there is no vertex chord crossing both the lines ã1, ã2

and b̃1, b̃2 (there is no vertex chord between s̃1 and s̃2). As fewer vertex chords cross ã1, ã2 than

b̃1, b̃2, at most 3∆/2 vertex chords cross the new scanline t̃ = 〈ã1, ã2〉. So, when OuterPara-

6.2 Bound on the Treewidth of Circle Graphs 139

Procedure TriangOuter(S, s̃ = 〈ã, b̃〉)
Input : A set of scanlines S and a scanline s̃ ∈ S satisfying the conditions:

(i) every vertex chord intersecting Ps̃ crosses s̃,
(ii) at most 2∆ vertex chords cross s̃, and
(iii) no scanline of S intersects Ps̃.

Output: A set of scanlines triangulating the outer polygon Ps̃.
X ← ∅
foreach scanpoint p̃i ∈ Ps̃ \ {ã, b̃} do

X ← X ∪ {〈ã, p̃i〉}
return X

Figure 6.8: Procedure TriangOuter computing a set of scanlines triangulating an outer
polygon where every vertex chord in this polygon crosses its delimiting scanline

ã

b̃

p̃1

p̃2

p̃3

Figure 6.9: Illustration of TriangOuter(S, s̃ = 〈ã, b̃〉)

Cuts(S∪{t̃}, t̃) is called, the condition that t̃ intersects at most 2∆ vertex chords is respected.

For every end point ei of a vertex chord vi that crosses s̃1, two triangles are created: ã1, d̃i−1, d̃i
and d̃i, d̃i−1, d̃

′
i.

The following claim is both the bottleneck and the crucial point of our argument.

Claim 6.14. The triangle ã1, d̃i−1, d̃i intersects at most 4∆ vertex chords.

Proof. Observe that every vertex chord intersecting this triangle and not crossing s̃1 crosses

either vi or vi−1. As at most 2∆ vertex chords cross s̃1, at most ∆ cross vi and at most ∆ cross

vi−1, the weight of this triangle is at most 4∆.

Moreover, at most 2∆+1 vertex chords cross s̃′′i and at most 2∆ vertex chords cross s̃′′′i . So,

the weight of the triangle d̃i, d̃i−1, d̃
′
i is at most 2∆ + 1 and when OuterParaCuts(S ∪X, s̃′′′i)

is called, the condition that the second parameter of the procedure is a scanline that crosses at

most 2∆ vertex chords is respected.

After adding the scanlines s̃3 and s̃4 we obtain two more triangles: ã1, d̃k, b̃2 and ã1, b̃2, ã2. The

first one intersects at most 4∆ vertex chords: at most 2∆ cross s̃1, at most ∆ cross vk and at

most ∆ cross s̃2. At most 3∆ vertex chords intersect the triangle ã1, b̃2, ã2: at most 2∆ intersect

140 Treewidth Bounds

Procedure TriangInner(S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉)
Input : A set of scanlines S and two scanlines s̃1, s̃2 ∈ S satisfying the conditions:

(i) there is no vertex chord between s̃1 and s̃2,
(ii) at most ∆ vertex chords cross one of s̃1 and s̃2, say s̃2,
(iii) at most 2∆ vertex chords cross the other scanline, s̃1, and
(iv) no scanline of S intersects the inner polygon Ps̃1,s̃2 .

Output: A set of scanlines triangulating Ps̃1,s̃2 .
Let the end points of s̃1 and s̃2 be ordered ã1, b̃1, b̃2, ã2 around the circle. Assume
w.l.o.g., that fewer vertex chords cross the line ã1, ã2 than the line b̃1, b̃2

Let t̃ := 〈ã1, ã2〉
X ← {t̃} ∪OuterParaCuts(S ∪ {t̃}, t̃)
Go around the circle from b̃1 to b̃2 (without passing through ã1 and ã2). Denote by
e1, . . . , ek the encountered end points of those vertex chords that cross s̃1

foreach ei, i = 1 to k do

Let s̃′i := 〈ã1, d̃i〉 with d̃i being the scanpoint following ei
Let s̃′′i := 〈d̃i, d̃i−1〉 with d̃0 = b̃1

Let s̃′′′i := 〈d̃i−1, d̃
′
i〉 with d̃′i being the scanpoint preceding d̃i

X ← X ∪ {s̃′i, s̃′′i , s̃′′′i }
X ← X ∪OuterParaCuts(S ∪X, s̃′′′i)

Let s̃3 := 〈d̃k, b̃2〉 and s̃4 := 〈b̃2, ã1〉
X ← X ∪ {s̃3, s̃4}
X ← X ∪OuterParaCuts(S ∪X, s̃3)
return X

Figure 6.10: Procedure TriangInner computing a set of scanlines triangulating an inner
polygon

ã1 s̃1 b̃1

ã2 s̃2 b̃2

d̃1

s̃′′′i

d̃i−1s̃′i

d̃i

s̃′′i

d̃k

. . .

. . .

Figure 6.11: Illustration of TriangInner(S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉)

s̃1 and at most ∆ intersect s̃2. Moreover at most 2∆ vertex chords cross s̃3. So, the conditions

of OuterParaCuts(S ∪X, s̃3) are respected.

The procedure OuterParaCuts is similar to ParaCuts on the outer polygon delimited

6.3 Conclusion 141

Procedure OuterParaCuts(S, s̃ = 〈ã, b̃〉)
Input : A set of scanlines S and a scanline s̃ ∈ S such that

(i) at most 2∆ vertex chords cross s̃, and
(ii) no scanline of S intersects Ps̃.

Output: A set of scanlines triangulating the outer polygon Ps̃.
X ← {s̃}
while X is not a maximal parallel in Ps̃ do

Choose a chord v ∈ Ps̃ such that X ∪ {v} is parallel
X ← X ∪ ScanChord(X, v)

Let t̃ be the scanline delimiting the recently obtained outer polygon with respect to X
that is a subpolygon of Ps̃
X ← X ∪TriangOuter(X, t̃)
foreach inner polygon Pt̃1,t̃2 in Ps̃ do

X ← X ∪TriangInner(X, t̃1, t̃2)

return X

Figure 6.12: Procedure OuterParaCuts computing a set of scanlines triangulating an
outer polygon where not necessarily every vertex chord in this polygon crosses the delim-
iting scanline of the outer polygon

by s̃. A new set of scanlines X ← {s̃} is created and is made maximal parallel by calling

ScanChord. If {s̃} is already maximal parallel, then TriangOuter(X, s̃) is called and the

conditions of that procedure are respected. If other scanlines had to be added to X to make

it maximal parallel, the procedure TriangOuter(X, t̃) is called for the outer polygon where

t̃ is a scanline of X intersecting at most ∆ vertex chords. Moreover, the procedure Triang-

Inner(X, t̃1, t̃2) is called for the inner polygons. Every scanline delimiting the inner polygons

intersects at most ∆ vertex chords, except s̃ that can intersect up to 2∆ vertex chords. So, we

respect the condition for TriangInner that one scanline intersects at most ∆ vertex chords

and the other one at most 2∆.

We have provided a recursive algorithm to triangulate the polygon P and have shown that

the obtained triangulation does not contain triangles intersecting more than 4∆ vertex chords.

Thus the corresponding tree decomposition of G has width at most 4∆− 1.

6.3 Conclusion

The treewidth bounds we showed in this chapter are interesting on their own, but we will also use

them in the next two chapters to derive faster exponential time algorithms for different problems.

Concerning the bound on sparse graphs, it would be interesting to study the treewidth of 4-

regular graphs or graphs with maximum degree 4 more directly. One possible direction could be

to try to obtain better bounds on the bisection width of 4-regular graphs. For circle graphs, it

would be interesting to know if, for large maximum degree ∆, there are infinitely many graphs

with treewidth 4∆ up to a constant additive factor. In other words, is the bound for circle

142 Treewidth Bounds

graphs tight? Other results relating treewidth and the maximum degree of graphs belonging

to special graph classes are obtained in [BT97, GKLT09].

Chapter 7
Domination on Graph Classes

The man who can dominate a London
dinner-table can dominate the world.

Oscar Wilde

The Minimum Dominating Set problem remains NP–hard when restricted to any of the

following graph classes: c-dense graphs, chordal graphs, 4-chordal graphs, weakly chordal graphs

and circle graphs. Developing and using a general approach, for each of these graph classes

we present an exponential time algorithm solving Minimum Dominating Set faster than the

best known algorithm for general graphs. Our approach combines a branching algorithm for

Minimum Set Cover and dynamic programming algorithms for graphs of small treewidth

to find a minimum dominating set of graphs belonging to these graph classes. Our algorithms

have the following running time: O(1.4114n) for chordal graphs, O(1.4694n) for weakly chordal

graphs, O(1.4778n) for 4-chordal graphs, O(1.4829n) for circle graphs, and O(1.2267(1+
√

1−2c)n)

for c-dense graphs.

7.1 Related Work

A set D ⊆ V of a graph G = (V,E) is dominating if every vertex of V \ D has at least one

neighbor in D. Given a graph G = (V,E), the Minimum Dominating Set problem asks to

compute a dominating set of minimum cardinality.

Exact exponential time algorithms for the Minimum Dominating Set problem have not

been studied until recently. By now there is a large interest in this particular problem. In

2004 three papers with exact algorithms for Minimum Dominating Set were published. In

[FKW04] Fomin et al. presented an O(1.9379n) time algorithm for general graphs and algo-

rithms for split graphs, bipartite graphs and graphs of maximum degree three with running

time O(1.4143n), O(1.7321n), O(1.5144n), respectively. Exact algorithms for Minimum Domi-

nating Set on general graphs have also been given by Randerath and Schiermeyer [RS04] and

by Grandoni [Gra06] in 2004. Their running times are O(1.8899n) and O(1.8026n), respectively.

These algorithms have been significantly improved by Fomin et al. [FGK09b] where the

144 Domination on Graph Classes

graph class running time

c-dense graphs O(1.2267n(1+
√

1−2c))
chordal graphs O(1.4114n)
weakly chordal graphs O(1.4694n)
4-chordal graphs O(1.4778n)
circle graphs O(1.4829n)

Table 7.1: Running time of our algorithms for Minimum Dominating Set on some graph
classes

authors obtain faster exact algorithms for Minimum Dominating Set on general graphs.

Their simple branching algorithm is analyzed using a measure–based analysis. Their algorithm

has running time O(1.5260n) and needs polynomial space. Using memorization one can speed

up the running time to O(1.5137n) needing exponential space then. Both variants are based on

algorithms for the Minimum Set Cover problem where the input consists of a universe U and

a collection S of subsets of U , and the problem requires to find a minimum number of subsets

in S such that their union is equal to U . These algorithms need running time O(1.2353|U|+|S|)

and polynomial space, or running time O(1.2303|U|+|S|) and exponential space.

Van Rooij and Bodlaender [vRB08a] were able to speed up these algorithms and obtained

an O(1.5134n) time algorithm using polynomial space and an O(1.5063n) time algorithm us-

ing exponential space. The currently fastest algorithm for Minimum Dominating Set has

been obtained by van Rooij et al. [vRNvD09], building on the previous algorithms and us-

ing an inclusion–exclusion branching. This algorithm has running time O(1.5048n) and uses

exponential space.

Fomin and Høie used a treewidth based approach to establish an algorithm to compute

a minimum dominating set for graphs of maximum degree three [FH06] within running time

O(1.2010n). The best known algorithm for Minimum Dominating Set on planar graphs has

running time O(23.99
√
n) [Dor06]. Liedloff [Lie08] constructed an O∗(2n/2) time algorithm to

solve Minimum Dominating Set on bipartite graphs beating the best known algorithm for

general graphs.

It is known that Minimum Dominating Set is NP–hard when restricted to circle graphs

[Kei93] and chordal graphs [BJ82], and thus also for weakly chordal and 4-chordal graphs. The

NP–hardness of Minimum Dominating Set for c-dense graphs is shown in Section 7.4.

7.2 Results

In this chapter we study the Minimum Dominating Set problem for various graph classes

and we obtain algorithms with a running time O(αn) better than the best known algorithm

solving Minimum Dominating Set on general graphs. Here the value of α depends on the

graph class. We obtain α < 1.5 for all classes except for c-dense graphs with c < 0.0155.

Section 7.3 presents two general frameworks. “Many vertices of high degree” relies heavily

on the Minimum Set Cover algorithm of van Rooij et al. [vRNvD09]. It is applied to c-

7.3 General Framework 145

dense graphs. Our treewidth based approach uses in fact the “many vertices of high degree”

approach for graphs of large treewidth, and otherwise it applies the Minimum Dominating

Set algorithm using a tree decomposition. This approach is applied to chordal, circle, 4-chordal

and weakly chordal graphs.

In Section 7.4 we give an O(1.2267n(1+
√

1−2c)) time algorithm for c-dense graphs, that is for

all graphs with at least cn2 edges, where c is a constant between 0 and 1/2. In Section 7.5 we

present exact algorithms solving the Minimum Dominating Set problem on chordal graphs,

weakly chordal graphs, 4-chordal graphs, and circle graphs; see Table 7.1.

The algorithms for circle, 4-chordal and weakly chordal graphs rely on a linear upper bound

of the treewidth in terms of the maximum degree. Such bounds are interesting in their own. A

related result for graphs of small chordality is provided in [BT97].

7.3 General Framework

Our algorithms solve the NP–hard Minimum Dominating Set problem by exploiting two

particular properties of the input graph G:

• G has many vertices of high degree:

|{v ∈ V : d(v) ≥ t− 2}| ≥ t for some (large) positive integer t (see Theorem 7.1);

• there is a constant c > 0 such that tw(H) ≤ c ·∆(H) for all induced subgraphs H of G,

and there is an algorithm to compute a tree decomposition of H of width at most c ·∆(H)

in polynomial time1 (see Theorem 7.4).

We describe methods using and combining those properties to establish exponential time algo-

rithms solving Minimum Dominating Set for a variety of graph classes for which the problem

remains NP–hard.

7.3.1 Many Vertices of High Degree

The following theorem shows that graphs with sufficiently many vertices of high degree allow to

speed up any O(α2n) time algorithm solving Minimum Dominating Set for general graphs

which is based on an algorithm for Minimum Set Cover of running time O(α|U|+|S|). This is

the case for the currently best known algorithm solving Minimum Dominating Set which is

based on an O(1.2267|U|+|S|) algorithm for Minimum Set Cover [vRB08a], that is α = 1.2267.

Theorem 7.1. Suppose there is an O(α|U|+|S|) algorithm computing a minimum set cover of

any input (U ,S). Let t(n) : N → R+. Then there is an O(α2n−t(n)) time algorithm to solve

the Minimum Dominating Set problem for all input graphs G fulfilling |{v ∈ V : d(v) ≥
t(n)− 2}| ≥ t(n), where n is the number of vertices of G.

1In fact running time 3c·∆(H) · nO(1) suffices.

146 Domination on Graph Classes

Proof. Let G = (V,E) be a graph fulfilling the conditions of the theorem and let t := t(n) ≥ 0.

Let T := {v ∈ V : d(v) ≥ t− 2}; thus |T | ≥ t. Notice that for each minimum dominating set

D of G either at least one vertex of T belongs to D, or T ∩D = ∅.
This allows to find a minimum dominating set of G by the following branching in two types

of subproblems: “v ∈ D” for each v ∈ T , and “T ∩D = ∅”. Thus we branch into |T | + 1 sub-

problems and for each subproblem we shall apply the O(α|U|+|S|) time Minimum Set Cover

algorithm to solve the subproblems. Recall the transformation given in [FGK09b]: the Min-

imum Set Cover instance corresponding to the instance G for the Minimum Dominating

Set problem has universe U = V and a collection of sets S = {N [u] : u ∈ V }, and thus

|U|+ |S| = 2n. Consequently the running time for a subproblem will be O(α2n−x), where x is

the number of elements of the universe plus the number of subsets eliminated from the original

Minimum Set Cover problem for the graph G.

Now let us consider the two types of subproblems. For every vertex v ∈ T , we choose v

in the minimum dominating set and we execute the O(α|U|+|S|) time Minimum Set Cover

algorithm on an instance of size at most 2n − (d(v) + 1) − 1 ≤ 2n − t. Indeed, we remove

from the universe U the elements of N [v] and we remove from S the set corresponding to v.

When branching into the case “discard T” we have an instance of set cover of size at most

2n− |T | = 2n− t since for every v ∈ T we remove from S the set corresponding to each v.

We would also like to draw the attention to [vRNvD09], where a stronger version of this

theorem is proved, needing the set of large–degree vertices only to be half as big.

Corollary 7.2. Let t(n) : N→ R+. Then there is an O(1.22672n−t(n)) time algorithm to solve

the Minimum Dominating Set problem for all input graphs G fulfilling |{v ∈ V : d(v) ≥
t(n)− 2}| ≥ t(n), where n is the number of vertices of G.

7.3.2 Treewidth Based Approach

To exploit tree decompositions of small width we rely on the following result of van Rooij et al.

Theorem 7.3 ([vRBR09]). There is an algorithm taking as input a graph G = (V,E) and a tree

decomposition T of G, which computes a minimum dominating set of G in time O(3kk2|V |),

where k is the width of T .

The following theorem shows how to solve the Minimum Dominating Set problem on

a hereditary class of graphs such that a tree decomposition of width at most c∆(G) can be

obtained for each graph G of the class, where c is a fixed constant. The idea is that such

graphs either have many vertices of high degree or their maximum degree is small and thus

their treewidth is small. In the first case the algorithm of the previous subsection is used. In

the second case the 3k · nO(1) time algorithm of Theorem 7.3 is used. To balance the running

time of the two parts, a parameter λ is appropriately chosen.

Theorem 7.4. Suppose there is an O∗(α|U|+|S|) algorithm computing a minimum set cover of

any input (U ,S). Let c > 0 be a constant. Let G be a hereditary class of graphs such that there

is an algorithm that for any input graph G ∈ G computes a tree decomposition of width at most

7.3 General Framework 147

Algorithm DS-HighDeg-SmallTw(a graph G = (V,E))
Input : A graph G fulfilling the conditions of Theorem 7.4.
Output: The domination number γ(G) of G.

λ← λ(c, α) // the value of λ is given in the proof of Theorem 7.4

X ← {u ∈ V : d(u) ≥ λn/c}
if |X| ≥ λn/c then

use the algorithm of Theorem 7.1 and return the result

else
use the algorithm of Theorem 7.3 and return the result

Figure 7.1: Algorithm for computing the domination number of any graph belonging to a
hereditary graph class such that a tree decomposition of width at most c ·∆(G) of every
graph G in this graph class can be computed in polynomial time for some constant c

value of c running time
1.5 O(1.4629n)
2 O(1.4694n)

2.5 O(1.4741n)
3 O(1.4778n)
4 O(1.4829n)
5 O(1.4865n)

Table 7.2: Running time of the algorithm in Corollary 7.5 for some values of c

c ·∆(G) in polynomial time. Then there is an algorithm to solve the Minimum Dominating

Set problem for all input graphs of G in time O∗
(
α

2n·
“

1− log3 α
log3 α+c+1

”)
.

Proof. Let λ = 2·c·log3 α
log3 α+c+1

. The algorithm first constructs the vertex set X containing all vertices

having degree at least λn/c (see algorithm DS-HighDeg-SmallTw).

By definition, for all v ∈ X, d(v) ≥ λn/c. Thus, if |X| ≥ λn/c, then we apply the algorithm

of Theorem 7.1, and thus a minimum dominating set can be found in time O∗(α2n−λn/c) =

O∗
(
α2n·(1−log3 α/(log3 α+c+1)

)
.

Otherwise |X| < λn/c and ∆(G \ X) < λn/c. Note that G \ X belongs to the hereditary

graph class G since it is an induced subgraph of G. Therefore a tree decomposition of G \ X
of width at most c∆(G \X) < cλn/c = λn can be found in polynomial time. By adding X to

every bag of this tree decomposition, one obtains a tree decomposition of G of width at most

λn+ λn/c = (c+ 1)λn/c. Now, the algorithm of Theorem 7.3 finds a minimum dominating set

in time O∗(3(c+1)λn/c) = O∗
(
α2n·(1−log3 α/(log3 α+c+1)

)
.

Corollary 7.5. Under the assumptions of Theorem 7.4, there is an algorithm of running time

O∗
(

1.2267
2n·
“

1− log3 α
log3 α+c+1

”)
to solve Minimum Dominating Set for all input graphs of G.

As we have shown, both methods can be adapted to speed up the algorithms by using any

148 Domination on Graph Classes

faster Minimum Set Cover algorithms established by future work. For different values of c,

the running time of the algorithm in Corollary 7.5 is displayed in Table 7.2.

In the rest of the chapter we show how the above mentioned general methods can be applied

to dense graphs (Section 7.4), chordal graphs, circle graphs, 4-chordal graphs and weakly chordal

graphs (Section 7.5).

7.4 Dense Graphs

It is known that problems like Maximum Independent Set, Hamiltonian Circuit and

Hamiltonian Path remain NP–hard when restricted to graphs having a large number of

edges [Sch95]. In this section we first show that Minimum Dominating Set also remains

NP–hard for c-dense graphs. Then we present an exponential time algorithm for the Minimum

Dominating Set problem on this graph class. The algorithm uses the “many vertices of high

degree” approach of the previous section.

Definition 7.6. A graph G = (V,E) is c-dense (or simply dense if there is no ambiguity), if

|E| ≥ cn2 where c is a constant with 0 < c < 1/2.

An easy way to show that anNP–hard graph problem remainsNP–hard for c-dense graphs,

for any c with 0 < c < 1/2, is to construct a graph G′ by adding a sufficiently large complete

graph as new component to the original graph G such that G′ is c-dense. This simple reduction

can be used to show that variousNP–hard graph problems remainNP–hard for c-dense graphs.

To name a few problems: Maximum Independent Set, Partition into Cliques, Vertex

Cover, Feedback Vertex Set and Minimum Fill-In.

In this way it can be shown that Minimum Dominating Set is NP–hard for c-dense

graphs by a polynomial time many–one reduction from the NP–hard problem Minimum Dom-

inating Set for split graphs.

Theorem 7.7. For any constant c with 0 < c < 1/2, the problem to decide, whether a c-

dense graph has a dominating set of size at most k is NP–complete, even when the inputs are

restricted to split graphs.

Proof. Let c be any constant with 0 < c < 1/2. Clearly, the problem to decide whether a graph

— and thus also a c-dense graph — has a dominating set of size at most k is in NP .

It is shown in [Ber84] that the problem of determining whether a split graph has a dominating

set of size at most k is NP–complete. We shall provide a polynomial many–one reduction from

Minimum Dominating Set for split graphs to Minimum Dominating Set for c-dense split

graphs.

Let k be an integer and G = (V = I ∪ C,E) a split graph where I and C form a partition

of the vertices of G such that I is an independent set and C is a clique. First we construct

a c-dense graph G′ = (V ′, E ′) with E ′ ≥ c · |V ′|2. The graph G′ = (V ′, E ′) is obtained

from the graph G by adding a clique C ′ of size
⌈
(1 + 4c|V |+

√
1 + 8c|V |(1 + |V |))/(2− 4c)

⌉
to G and adding all edges with one end point in C and the other in C ′. This ensures that

7.4 Dense Graphs 149

|C ′| · (|C ′| − 1)/2 ≥ c · (|V | + |C ′|)2. Thus, G′ is a split graph with a partition of V ′ into an

independent set I and a clique C ∪ C ′ with at least c(|V ′|)2 edges, and hence G′ is a c-dense

split graph.

Now we show that G has a dominating set of size a most k if and only if G′ has a dominating

set of size at most k.

First, assume that G′ has a dominating set D with |D| ≤ k. Since NG′ [x
′] ⊆ NG′ [x] for all

x′ ∈ C ′ and all x ∈ C, we may replace each vertex of C ′ belonging to D by a vertex of C. In

this way we obtain a dominating set D′ ⊆ I ∪ C of G′ such that |D′| ≤ k. Consequently D′ is

also a dominating set of G.

Conversely, assume that D is a dominating set of G of size at most k. If D contains at

least one vertex of C then D is also a dominating set of G′ since each vertex of C ′ is adjacent

to all vertices of C. Otherwise, D contains no vertex of C and thus each vertex in C has at

least one neighbor in D ∩ I. In this second case we replace any vertex s ∈ D ∩ I by a neighbor

t ∈ C and obtain D′ = (D \ {s}) ∪ {t}. Then D′ is a dominating set of G since NG[s] ⊆ NG[t].

Furthermore, since D′ contains a vertex of C it is also a dominating set of G′. Hence G′ has in

each case a dominating set of size at most k.

Thus we obtain that the problem of deciding whether a c-dense split graph has a dominating

set of size at most k is NP–complete.

The main idea of our algorithm is to find a large subset of vertices of large degree.

Lemma 7.8. For some fixed t, t′, 1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, any graph G = (V,E) with

|E| ≥ 1 +
(t− 1)(n− 1) + (n− t+ 1)(t′ − 1)

2
has a subset T ⊆ V such that

(i) |T | ≥ t,

(ii) for every v ∈ T , d(v) ≥ t′.

Proof. Let 1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, and a graph G = (V,E) such that there is no subset

T with the previous properties. Then for any subset T ⊆ V of size at least t, there exists a

vertex v ∈ T such that d(v) < t′. Then such a graph can only have at most k := k1 + k2

edges where k1 = (t − 1)(n − 1)/2 (which corresponds to t − 1 vertices of degree n − 1) and

k2 = (n− t+ 1)(t′ − 1)/2 (which corresponds to n− (t− 1) vertices of degree t′ − 1). Observe

that if one of the n − (t − 1) vertices has a degree greater than t′ − 1 then the graph has a

subset T with the required properties, a contradiction.

Lemma 7.9. Every c-dense graph G = (V,E) has a set T ⊆ V fulfilling

(i) |T | ≥
⌊
n−
√

9− 4n+ 4n2 − 8cn2 − 3

2

⌋
,

(ii) for every v ∈ T , d(v) ≥
⌊
n−
√

9− 4n+ 4n2 − 8cn2 − 3

2

⌋
− 2.

Proof. We apply Lemma 7.8 with t′ = t − 2. Since we have a dense graph, |E| ≥ cn2. Using

inequality 1 + ((t− 1)(n− 1) + (n− t+ 1)(t− 3))/2 ≤ cn2 we obtain that in a dense graph the

value of t in Lemma 7.8 is such that n− 3−
√

9−4n+4n2−8cn2

2
≥ t.

150 Domination on Graph Classes

Using the “many vertices of high degree” approach we establish

Theorem 7.10. For any c with 0 < c < 1/2, there is an O
(

1.2267(1+
√

1−2c)n
)

time algorithm

to solve the Minimum Dominating Set problem on c-dense graphs.

Proof. Combining Theorem 7.1, Corollary 7.2 and Lemma 7.9 we obtain an algorithm for solving

the Minimum Dominating Set problem in time

O

(
1.2267

2n−
—
n−
√

9−4n+4n2−8cn2−3
2

�)
= O

(
1.2267n+

√
9−4n+4n2−8cn2−3

2

)
= O

(
1.2267n+

√
9+4n2(1−2c)

2

)
= O

(
1.2267n+ 3+2n

√
1−2c

2

)
= O

(
1.2267n(1+

√
1−2c) · 1.2267

3
2

)
= O

(
1.2267n(1+

√
1−2c)

)
.

7.5 Other Graph Classes

In this section, we present exponential time algorithms for the Minimum Dominating Set

problem on chordal graphs, circle graphs, 4-chordal graphs and weakly chordal graphs in a

treewidth based approach.

A graph is chordal if it has no chordless cycle of length greater than three. Chordal graphs is

a well–known graph class with its own chapter in Golumbic’s monograph [Gol80]. Split graphs,

strongly chordal graphs and undirected path graphs are well–studied subclasses of chordal

graphs.

We shall use the clique tree representation of chordal graphs that we view as a tree decom-

position of the graph. A tree T is as clique tree of a chordal graph G = (V,E) if there is a

bijection between the maximal cliques of G and the nodes of T such that for each vertex v ∈ V
the cliques containing v induce a subtree of T . It is well–known that tw(G) ≥ ω(G)− 1 for all

graphs. Furthermore the clique tree of a chordal graph G is an optimal tree decomposition of

G, that is its width is precisely ω(G)− 1.

We use the following Corollary of Theorem 7.1.

Corollary 7.11. There is an algorithm taking as input a graph G and a clique C of G and

solving the Minimum Dominating Set problem in time O(1.22672n−|C|).

Proof. Use Corollary 7.2 and note that every vertex in C has degree at least |C| − 1.

Our algorithm on chordal graphs works as follows: If the graph has large treewidth then

it necessarily has a large clique and we apply Corollary 7.11. Otherwise the graph has small

treewidth and we use Theorem 7.3.

7.5 Other Graph Classes 151

Theorem 7.12. There is an O(1.4114n) time algorithm to solve the Minimum Dominating

Set problem on chordal graphs.

Proof. If tw(G) < 0.3136n, by Theorem 7.3, Minimum Dominating Set can be solved in

time O(30.3136n) = O(1.4114n). Otherwise, tw(G) ≥ 0.3136n and using Corollary 7.11 we

obtain an O(1.22672n−0.3136n) = O(1.4114n) time algorithm.

Recall from Section 6.2 that for any circle graph G, tw(G) ≤ 4∆(G) (Theorem 6.13). Now

we simply apply our treewidth based approach of Section 7.3 to circle graphs. Furthermore

the class of circle graphs is hereditary and there is a polynomial time algorithm to compute

an optimal tree decomposition of circle graphs (Theorem 6.9). Consequently Theorem 7.4 and

Corollary 7.5 can be applied and we obtain:

Theorem 7.13. There is an O(1.4829n) algorithm to solve Minimum Dominating Set for

circle graphs.

The chordality of a graph is the size of its longest chordless cycle. A graph is 4-chordal

if its chordality is at most 4. Thus 4-chordal graphs are a superclass of chordal graphs. We

constructively show in [GKLT09] that, for any 4-chordal graph G, its treewidth is at most

3∆(G).

Theorem 7.14 ([GKLT09]). For any 4-chordal graph G, tw(G) ≤ 3∆(G). Moreover, there is

a polynomial time algorithm computing, for any 4-chordal input graph G, a tree decomposition

of width at most 3∆(G).

Combining Theorem 7.14 and Corollary 7.5 one establishes:

Theorem 7.15. There is an O(1.4778n) algorithm to solve Minimum Dominating Set for

4-chordal graphs.

A graph G is weakly chordal if both G and its complement are 4-chordal. It is easy to

check that chordal graphs are a proper subclass of weakly chordal graphs, which are in turn a

proper subclass of 4-chordal graphs. The treewidth of weakly chordal graphs can be computed

in polynomial time [BT01].

We show in [GKLT09] that for any weakly chordal graph G its treewidth is at most 2∆(G).

Theorem 7.16 ([GKLT09]). For any weakly chordal graph G, tw(G) ≤ 2∆(G).

Combining Theorem 7.16 and Corollary 7.5 one establishes:

Theorem 7.17. There is an O(1.4694n) algorithm to solve Minimum Dominating Set for

weakly chordal graphs.

152 Domination on Graph Classes

7.6 Conclusion

We presented several exponential time algorithms to solve the Minimum Dominating Set

problem on graph classes for which this problem remains NP–hard. All these algorithms are

faster than the best known algorithm to solve Minimum Dominating Set on general graphs.

We have also shown that any faster algorithm for the Minimum Set Cover problem, that

is of running time O(α|U|+|S|) with α < 1.2267, could immediately be used to speed up all

our algorithms. It is also clear, that a faster treewidth based algorithm with running time

ck · nO(1), c < 3 taking as input a graph G = (V,E) and a tree decomposition of G of width at

most k, can be used to speed up the presented algorithms.

Besides classes of sparse graphs (as for example cubic graphs [FH06]) two other graph classes

are of interest: split and bipartite graphs. For split graphs, combining ideas of [FKW04] and

[vRNvD09] one easily obtains an O(1.2267n) algorithm. In [Lie08], Liedloff uses a preprocessing

technique to compute a minimum dominating set in time 2n−z · nO(1) of graphs that have an

independent set of size z, which implies an O∗(2n/2) = O(1.4143n) time algorithm to solve

Minimum Dominating Set on bipartite graphs (see Subsection 1.2.6).

The “high degree” and the “treewidth based” method of this chapter can most likely be

applied to other NP–hard problems for constructing fast exponential time algorithms when

restricted to graph classes with the corresponding properties. One example is the Minimum

Independent Dominating Set problem (see [GL06]).

It is likely that bounds on the treewidth in terms of the maximum degree for circle graphs,

4–chordal graphs, weakly chordal graphs or other graph classes can be used to construct expo-

nential time algorithms for NP–hard problems on special graph classes in a way similar to our

approach for domination.

Chapter 8
Enumeration and Pathwidth

It’s better to be prepared for an opportunity
and not have one than to have an opportunity
and not be prepared.

Whitney M. Young, Jr

This chapter presents a generic algorithmic technique based on the enumeration of indepen-

dent sets and dynamic programming over a path decomposition of the graph. The approach

is based on the following idea: either a graph has nice (from the algorithmic point of view)

properties which allow a simple recursive procedure to find the solution fast, or the pathwidth

of the graph is small, which in turn can be used to find the solution by dynamic programming.

By making use of this technique we obtain algorithms

• running in time O(1.7272n) for deciding if a graph is 4-colorable,

• running in time O(1.6259n) for counting the number of 3-colorings of a graph, and

• running in time O(1.4082n) for finding a minimum maximal matching in a graph.

8.1 Considered Problems

The Chromatic Number problem is one of the oldest and most intensively studied problems

in combinatorics and algorithms. The task is to color the vertices of a graph such that no two

adjacent vertices are assigned the same color. The smallest number of colors needed to color a

graph G is called the chromatic number , χ(G), of G. The corresponding decision version of the

coloring problem is k-Coloring, where for a given graph G and an integer k we are asked if

χ(G) ≤ k. The k-Coloring problem is one of the classical NP–complete problems [GJ79]. In

fact it is known to be NP–complete for every k ≥ 3. A lot of effort was also put in designing

efficient approximation algorithms for the optimization version of the problem, namely, given

a k-colorable graph to try to color it with as few colors as possible. Unfortunately, it has

been shown that if certain reasonable complexity conjectures hold then k-Coloring is hard

to approximate within n1−ε for any ε > 0 [FK98, KP06].

154 Enumeration and Pathwidth

The history of exponential time algorithms for graph coloring is rich. Christofides obtained

the first non–trivial algorithm computing the chromatic number of a graph on n vertices running

in time O∗(n!) in 1971 [Chr71]. In 1976, Lawler [Law76] devised an algorithm with running

time O(2.4423n) based on dynamic programming over subsets and enumeration of maximal

independent sets. Eppstein [Epp03] reduced the bound to O(2.4151n) and Byskov [Bys04a]

to O(2.4023n). In a breakthrough paper, Björklund et al. [BHK09] devised an O∗(2n) algo-

rithm for Chromatic Number based on a combination of inclusion–exclusion and dynamic

programming.

Apart from the general Chromatic Number problem, the k-Coloring problem for small

values of k like 3 and 4 has also attracted a lot of attention. The fastest known algorithm

deciding if a the chromatic number of a graph is at most 3 runs in time O(1.3289n) and is

due to Beigel and Eppstein [BE05]. For 4-Coloring Byskov [Bys04a] designed the previously

fastest algorithm, running in time O(1.7504n).

The counting version of the k-Coloring problem, #k-Coloring, is to count the number

of all possible k-colorings of a given graph. #k-Coloring (and its generalization known as

Chromatic Polynomial) are among the oldest counting problems. Björklund et al. [BHK09]

have also shown that the chromatic polynomial of a graph can be computed in time O∗(2n). For

k = 3, #k-Coloring was also studied in the literature. Angelsmark et al. [AJ03] provide an

algorithm for #3-Coloring with running time O(1.788n). Fürer and Kasiviswanathan [FK05]

show how to solve #3-Coloring with running time O(1.770n).

In the Minimum Maximal Matching problem, one is asked to find a maximal matching

of minimum size of a graph. For this problem, several exact algorithms can be found in the lit-

erature. Randerath and Schiermeyer [RS04] gave an algorithm of time complexity O(1.4422m).

Raman et al. [RSS07] improved the running time by giving an algorithm of time complexity

O(1.4422n). They also gave reductions showing that faster algorithms for Minimum Maximal

Matching automatically lead to improved running times for a number of other problems, like

Minimum Edge Dominating Set and Matrix Domination.

8.2 Our Results

In this chapter we show a generic technique to obtain exact algorithms for several problems

for which it is natural to enumerate independent sets. The technique is based on the following

combinatorial property which is proved algorithmically and which is interesting in its own:

Either a graph G has a nice “algorithmic” property which (very sloppily) means that when we

apply branching or a recursive procedure to solve a problem then the branching procedure on

subproblems of a smaller size works efficiently, or (if branching is not efficient) the pathwidth

of the graph is small. This type of technique can be used for a variety of problems where the

sizes of the subproblems on which the algorithm is called recursively decrease significantly by

branching on vertices of high degrees.

In Section 8.3, this technique is presented, along with a general upper bound on the resulting

running time, based on the running times of the subprocedures that are plugged into the

algorithm. In Section 8.4 we use this technique to obtain exact algorithms for different coloring

8.3 Framework Combining Enumeration and Pathwidth 155

problems. We show that #3-Coloring and 4-Coloring can be solved in time O(1.6259n)

and O(1.7272n) respectively. These improve the best known results for these two problems.

We also apply the technique to Minimum Maximal Matching and derive an O(1.4082n)

algorithm for this problem. In [vRB08b], van Rooij and Bodlaender give a faster O(1.3226n)

algorithm for Minimum Maximal Matching.

8.3 Framework Combining Enumeration and Pathwidth

Let us assume that we have a graph problem for which

(a) we know how to solve it by enumerating independent sets, or maximal independent sets,

of the input graph, and

(b) we also know how to solve the problem using dynamic programming over the path de-

composition of the input graph.

For example, to check whether a graph G is 3-colorable, one can enumerate all independent

sets I of G and for each independent set I can check whether G \ I is bipartite. It is also easy

to obtain a 3` · nO(1) algorithm for checking if a graph is 3-colorable if a path decomposition of

width ` is known for G (see Lemma 8.5).

For some instances, approach (a) might be faster and for other instances, the path decom-

position algorithm might be preferable. One method to get the best of both algorithms would

be to compute a path decomposition of the graph using Lemma 6.5 on page 130, and choose

one of the two algorithms based on the width of this path decomposition. Unfortunately, this

direct method is not very helpful in obtaining better worst case bounds on the running time

of the algorithm as it is difficult to predict the running time of the enumeration algorithm for

graphs for which the computed path decomposition has large width.

Here in our technique we start by enumerating (maximal) independent sets and based on the

knowledge we gain on the graph by this enumeration step, we prove that either the enumeration

algorithm is fast, or the pathwidth of the graph is small. This means that either the input graph

has a good algorithmic property, or it has a good graph–theoretic property.

To enumerate (maximal) independent sets of the input graph G, we use a very standard

approach. Two sets I and C are constructed by a recursive procedure, where I is the set of

vertices in the independent set and C the set of vertices not in the independent set. Let v be

a vertex of maximum degree in G \ (I ∪ C), the algorithm makes one recursive call where it

adds v to I and all its neighbors to C and another recursive call where it adds v to C. This

branching into two subproblems decreases the number of vertices in G \ (I ∪ C) according to

the following recurrence

T (n) ≤ T (n− d(v)− 1) + T (n− 1).

From this recurrence, we see that the running time of the algorithm depends on how often it

branches on a vertex of highest degree. This algorithmic property is reflected by the size of C:

frequent branchings on vertices of high degree imply that |C| grows fast (in one branch).

156 Enumeration and Pathwidth

Algorithm enumISPw(G, I, C)
Input : A graph G, an independent set I of G and a set of vertices C such that

N(I) ⊆ C ⊆ V (G) \ I.
Output: An optimal solution which has the problem-dependent properties.

if (∆(G \ (I ∪ C)) ≥ a) or
(∆(G \ (I ∪ C)) = a− 1 and |C| > αa−1|V (G)|) or
(∆(G \ (I ∪ C)) = a− 2 and |C| > αa−2|V (G)|) or
· · · or

(∆(G \ (I ∪ C)) = 3 and |C| > α3|V (G)|) then
choose a vertex v ∈ V (G) \ (I ∪ C) of maximum degree in G \ (I ∪ C)
S1 ← enumISPw(G, I ∪ {v}, C ∪N(v)) R1
S2 ← enumISPw(G, I, C ∪ {v}) R2
return combine(S1, S2)

else if ∆(G \ (I ∪ C)) = 2 and |C| > α2|V (G)| then
return enumIS(G, I, C)

else
Stop this algorithm and run Pw(G, I, C) instead.

Figure 8.1: Algorithm enumISPw(G, I, C) combining the approach of enumerating in-
dependent sets and of dynamic programming over a path decomposition of the graph to
solve various problems

On the other hand we can exploit a graph–theoretic property if C is small and there are

no vertices of high degree in G \ (I ∪ C). In this case we use Lemma 6.5 to upper bound the

pathwidth of G. If a path decomposition of G\(I∪C) of size βd|V (G)\(I∪C)| can be computed,

then a path decomposition of G of size βd|V (G) \ (I ∪ C)|+ |C| can be computed easily. Here

βd is a constant strictly less than 1 depending on the maximum degree of the graph. If it turns

out that a path decomposition of small width can be computed, the algorithm enumerating

(maximal) independent sets is completely stopped without any further backtracking and an

algorithm based on this path decomposition is executed on the original input graph.

In the rest of this section, we give a general framework combining

• algorithms based on the enumeration of maximal independent sets, and

• algorithms based on path decompositions of small width,

and discuss the running time of the algorithms based on this framework. This framework is not

problem–dependent and it relies on two black boxes that have to be replaced by appropriate

procedures to solve a specific problem.

Algorithm enumISPw (G, I, C) in Figure 8.1 is invoked with the parameters (G, ∅, ∅),
where G is the input graph, and the algorithms enumIS and Pw are problem–dependent sub-

routines. The function combine is supposed to take polynomial time and it is also a problem–

dependent subroutine. The values for a, αa, . . . , α3, and α2 (0 = αa ≤ αa−1 ≤ · · · ≤ α2 < 1) are

carefully chosen constants to balance the time complexities of enumeration and path decompo-

sition based algorithms and to optimize the overall running time of the combined algorithm.

8.3 Framework Combining Enumeration and Pathwidth 157

Algorithm enumIS(G, I, C) is problem–dependent and returns an optimal solution respecting

the choice for I and C, where I is an independent set and C is a set of vertices not belonging

to the independent set (set of discarded vertices). The sets I and C are usually completed into

a (maximal) independent set and a (minimal) vertex cover for G by enumerating (maximal)

independent sets of G \ (I ∪ C), before the problem–specific treatment is done.

Algorithm Pw(G, I, C) first computes a path decomposition based on G, I and C and the

maximum degree of G \ (I ∪ C). It then calls a problem–dependent algorithm based on this

path decomposition of G.

Let n denote the number of vertices ofG, T (n) be the running time of Algorithm enumISPw

on G, Te(n, i, c) be the running time of Algorithm enumIS and Tp(n, i, c) be the running time of

Algorithm Pw with parameters G, I, C where i = |I| and c = |C|. We also assume that for any

graph with n vertices and maximum degree d, a path decomposition of width at most βdn can

be computed. The following lemma is used by Algorithm Pw to compute a path decomposition

of G of small width.

Lemma 8.1. Let βd be a constant such that a path decomposition of width at most βd|V (H)|
can be computed in polynomial time for any graph H with maximum degree at most d. Then a

path decomposition of width at most βd|V (G)\(I∪C)|+ |C| can be computed in polynomial time

for a graph G if I is an independent set in G, N(I) ⊆ C ⊆ V (G) \ I and ∆(G \ (I ∪ C)) ≤ d.

Proof. As I is an independent set in G and C separates I from G \ (I ∪ C), every vertex in I

has degree 0 in G \C. Thus, a path decomposition of G \C of size at most βd|V (G) \ (I ∪C)|
can be computed in polynomial time. Adding C to each bag of this path decomposition gives

a path decomposition of width at most βd|V (G) \ (I ∪ C)|+ |C| of G.

Given the conditions under which Pw is executed, the following lemma upper bounds its

running time.

Lemma 8.2. Let tpw > 1 be a constant. If the considered problem can be solved for any graph

H in time O∗((tpw)`), given a path decomposition of width ` of H, then

Tp(n, i, c) = O∗
(

max
d∈{2,3,...,a−1}

(
(tpw)(βd+(1−βd)αd)n

))
.

Proof. The proof follows from Lemma 8.1 and the conditions on |C| and ∆(G \ (I ∪C)) under

which Algorithm Pw is executed.

To estimate the maximum size of the search tree we assume that Algorithm Pw is not

executed. We denote αd−1 − αd by ∆αd. Let tn, ti and tc be constants such that Te(n, i, c) =

O∗((tn)n(ti)
i(tc)

c). The next lemma bounds the size of the search tree when the algorithm

based on a path decomposition is not used.

Lemma 8.3. If Algorithm Pw is not executed, then

T (n) = O∗
(

(tn)n(tc)
α2n

a∏
d=3

(1 + r(d, ti))
∆αdn

)
,

158 Enumeration and Pathwidth

where r(d, ti) is the positive real root of (1 + x)−(d−1) · x−1 · ti − 1.

Proof. Let Td(n, i, c), for d ∈ {2, 3, . . . , a − 1}, be the running time of Algorithm enumISPw

when Algorithm Pw is not executed, and the input of Algorithm enumISPw is a triple (G, I, C)

with |V (G)| = n, |I| = i, and |C| = c such that G \ (I ∪ C) has maximum degree d. Also,

let Ta(n, 0, 0) = T (n) if Algorithm Pw is not executed. Clearly, T2(n, i, c) = Te(n, i, c) as

Algorithm Pw is executed whenever Algorithm enumIS is not executed and G \ (I ∪ C) has

maximum degree at most 2. Let us now express Td(n, i, c) in terms of Td−1(·, ·, ·) for d ∈
{3, . . . , a}. Consider a node b in the search tree that corresponds to an instance with maximum

degree d < a and whose parent corresponds to an instance with maximum degree more than

d (if d = a, then b is the root of the search tree). Now, we look at the part of the search tree

containing b and all descendants of b associated to instances of maximum degree (at least) d.

Observe that |C| increases by at most (αd−1 − αd)n = ∆αdn in this part of the search tree. In

each branch of the type R1, |C| increases by at least d and in each branch of the type R2,

|C| increases by 1. We consider a leaf ` in this part of the search tree. Let r ∈ [0,∆αdn/d] be

the number of times the algorithm branches according to R1 on the path from b to `. Then it

branches at most ∆αdn− dr times according to R2 on this path. Also note that the distance

between ` and d in the search tree is at most ∆αdn− (d− 1)r. We get that

Td(n, i, c) = O∗
∆αdn/d∑

r=0

(
∆αdn− (d− 1)r

r

)
Td−1(n, i+ r, c+ ∆αdn)

 .

In the general situation the degree d may not change to d− 1 but rather jump to something

smaller. But the worst case bounds on the size of the search tree are achieved when d decreases

progressively as considered above.

To prove the lemma, it is sufficient to expand Ta(n, 0, 0) and to prove that

∆αdn/d∑
r=0

(
∆αdn− (d− 1)r

r

)
tri (8.1)

is at most (1 + r(d, ti))
∆αdn. The sum in (8.1) is bounded by (∆αdn/d)B where B is the maxi-

mum term in this sum. Let us assume that B =
(

∆αdn−(d−1)j
j

)
(ti)

j for some j ∈ {0, . . . ,∆αdn/d}.
Now we use the well known fact that for any x > 0 and 0 ≤ k ≤ n,(

n

k

)
≤ (1 + x)n

xk
,

and we arrive at

B =

(
∆αdn− (d− 1)j

j

)
(ti)

j ≤ (1 + r(d, ti))
∆αdn−(d−1)j

r(d, ti)j
(ti)

j

= (1 + r(d, ti))
∆αdn ·

(
(1 + r(d, ti))

−(d−1)

r(d, ti)
· ti
)j

= (1 + r(d, ti))
∆αdn.

8.4 Applications 159

The following theorem combines Lemmata 8.2 and 8.3 to upper bound the overall running

time of the algorithms resulting from this framework.

Theorem 8.4. The running time of Algorithm enumISPw on a graph on n vertices is

T (n) = O∗
(

(tn)n(tc)
α2n

a∏
d=3

(1 + r(d, ti))
∆αdn + max

d∈{2,3,··· ,a−1}

(
(tpw)(βd+(1−βd)αd)n

))
,

where r(d, ti) is the positive real root of (1 + x)−(d−1) · x−1 · ti − 1.

The current best values for βd, 2 ≤ d ≤ 6, are obtained from Lemma 6.5 on page 130.

8.4 Applications

In this section we use the framework of the previous section to derive algorithms for #3-

Coloring, 4-Coloring and Minimum Maximal Matching.

8.4.1 Counting 3-Colorings

We first describe the problem-dependent subroutines we need to use in our Algorithm enu-

mISPw to solve #3-Coloring in time O(1.6259n).

Algorithm enumISPw returns here an integer, I corresponds to the color class C1 and C

to the remaining two color classes C2 and C3 of every counted coloring of G. Algorithm enumIS

with parameters G, I, C enumerates all independent sets of G \ (I ∪C) and for each, adds this

independent set to I, and then checks if G \ I is bipartite. If G \ I is bipartite, then a counter

counting the independent sets is incremented by 2cc(G\I), where cc(·) denotes the number of

connected components of a graph. This takes time Te(n, i, c) = 2n−i−c. Thus, tn = 2, ti = 1/2

and tc = 1/2.

The function combine corresponds in this case to the addition of two integers. The running

time of Algorithm Pw is based on the following lemma.

Lemma 8.5. Given a graph G with a path decomposition of G of width `, #k-Coloring can

be solved in time k`nO(1).

Now we use Theorem 8.4 and Lemma 6.5 to evaluate the overall complexity of our #3-

Coloring algorithm.

Theorem 8.6. The #3-Coloring problem can be solved in time O(1.6259n).

Proof. We use Theorem 8.4 and Lemma 6.5 with a = 6, α2 = 0.4424, α3 = 0.3308, α4 = 0.1636

and α5 = 0.0160. The pathwidth part of the algorithm takes time

O∗
(
max

(
3α2n, 3(1+5α3)n/6, 3(1+2α4)n/3, 313/30+17·α5/30

))
= O(1.62585n) .

160 Enumeration and Pathwidth

> for d from 3 to 6 do

> t[d] := 1+max(fsolve((1+r)^(-(d-1))*r^(-1)*2^(-1)-1));

> end do;

t[3] := 1.297156508

t[4] := 1.253724958

t[5] := 1.223284957

t[6] := 1.200511272

> fsolve({3^a2=3^((1+5*a3)/6),

> 3^a2=3^((1+2*a4)/3),

> 3^a2=3^(13/30+(1-13/30)*a5),

> 3^a2=2*(1/2)^a2*t[3]^(a2-a3)*t[4]^(a3-a4)*

> t[5]^(a4-a5)*t[6]^a5});

{a2 = 0.4423901971, a3 = 0.3308682365,

a4 = 0.1635852957, a5 = 0.01598270083}

Figure 8.2: Maple code for obtaining optimal values for the constants α2 to α5 of Algorithm
enumISPw for solving the #3-Coloring problem

The branching part of the algorithm takes time

O∗
(
2n · (1/2)α2n · 1.2972(α2−α3)n · 1.2538(α3−α4)n · 1.2233(α4−α5)n · 1.2006α5n

)
= O(1.62585n) .

The constants in the proof of Theorem 8.6 are easily obtained via the Maple program in

Figure 8.2. Note that it would not help to set a = 7, as 1.6259 < 323/45 ' 1.7534.

8.4.2 4-Coloring

A well known technique [Law76] to check if a graph is k-colorable is to check for all maximal

independent sets I of size at least dn/ke whether G \ I is (k− 1)-colorable. In the analysis, we

use the following theorem to bound the number of maximal independent sets of a given size.

Theorem 8.7 ([Bys04a]). The maximum number of maximal independent sets of size at most

k in any graph on n vertices for k ≤ n/3 is

N [n, k] := bn/kc(bn/kc+1)k−n(bn/kc+ 1)n−bn/kck.

Moreover, all such sets can be enumerated in time O∗(N [n, k]).

We also need the currently fastest algorithm deciding 3-Coloring.

Theorem 8.8 ([BE05]). 3-Coloring can be solved in time O(1.3289n).

8.4 Applications 161

In Algorithm enumISPw, which returns here a boolean, I corresponds to the color class C1

and C to the remaining three color classes C2, C3 and C4. Algorithm enumIS with parameters

G, I, C enumerates all maximal independent sets of G \ (I ∪C) of size at least dn/4e − |I| and

for each, adds this independent set to I, then checks if G \ I is 3–colorable using Theorem 8.8.

If yes, then G is 4–colorable. This takes time

Te(n, i, c) =
n−i−c∑

`=dn/4e−i

34`−n+c+i4n−c−i−3`1.3289n−i−`.

As
∑b3n/4c−c

`=0 34`4−3`1.3289−` is upper bounded by a constant, tn = 41/41.32893/4, ti = 42/33

and tc = 3/4.

Theorem 8.9. The 4-Coloring problem can be solved in time O(1.7272n).

Proof. We use Theorem 8.4 and Lemma 6.5 with a = 5, α2 = 0.39418, α3 = 0.27302 and

α4 = 0.09127, and the pathwidth algorithm of Lemma 8.5.

8.4.3 Minimum Maximal Matching

Given a graph G = (V,E), any set of pairwise disjoint edges is called a matching of G. A

matching M is maximal if there is no matching M ′ such that M ⊂M ′. The problem of finding

a maximum matching is well studied in algorithms and combinatorial optimization. One can

find a matching of maximum size in polynomial time but there are many versions of matching

which are NP–hard. Here, we give an exact algorithm for one such version [GJ79]. More

precisely, the problem we study is:

Minimum Maximal Matching: Given a graph G = (V,E) find a maximal matching

of minimum cardinality.

The enumeration phase, Algorithm enumIS, uses the following characterization of a minimum

maximal matching.

Theorem 8.10 ([RSS07]). Let G = (V,E) be a graph and M be a minimum maximal matching

of G. Let

V [M] = {v | v ∈ V and v is an end point of some edge of M}

be a subset of all endpoints of M . Let S ⊆ V [M] be a vertex cover of G. Let M ′ be a maximum

matching in G[S] and M ′′ be a maximum matching in G−V [M ′], where V [M ′] is the set of the

endpoints of edges of M ′. Then X = M ′ ∪M ′′ is a minimum maximal matching of G.

Note that in Theorem 8.10, S does not need to be a minimal vertex cover. Therefore

Algorithm enumIS enumerates all minimal vertex covers of G \ (I ∪ C). For every minimal

vertex cover Q of G \ (I ∪ C), S = C ∪ Q is a vertex cover of G and the characterization of

Theorem 8.10 is used to find a minimum maximal matching of G. The running time of this step

is within a polynomial factor of the enumeration of all minimal vertex covers of G \ (I ∪ C),

162 Enumeration and Pathwidth

that is O(3(n−i−c)/3) by Theorem 3.5 on page 54 and the following theorem by Johnson et al.

[JYP88].

Theorem 8.11 ([JYP88]). All maximal independent sets of a graph can be enumerated with

polynomial delay.

For the path decomposition based algorithm, we give a lemma for finding a minimum max-

imal matching on graphs of bounded pathwidth. The proof of the lemma is based on standard

dynamic programming on graphs of bounded pathwidth.

Lemma 8.12. There exists an algorithm to compute a minimum maximal matching of a graph

G in time 3`nO(1) when a path decomposition of G of width at most ` is given.

Plugging all this into our framework, we obtain the following theorem.

Theorem 8.13. A minimum maximal matching of a graph on n vertices can be found in time

O(1.4082n).

Proof. We use Theorem 8.4 and Lemma 6.5 with a = 4, α2 = 0.31154 and α3 = 0.17385, the

pathwidth algorithm of Lemma 8.12, and the vertex cover enumeration described earlier.

8.5 Conclusion

In this chapter, we combined the enumeration of independent sets and pathwidth based algo-

rithms. The framework we presented is very general in that it suffices to plug in the appro-

priate subroutines to solve a problem, and the running time analysis is almost immediate via

the high–level running time analysis, summarized in Theorem 8.4, that we have provided for

the framework. Instead of using pathwidth algorithms as subroutines, one could also combine

the enumeration of independent sets with other algorithms that are fast when given a graph

G = (V,E) and a small set C ⊆ V such that the maximum degree of G \C is small. Replacing

the pathwidth based algorithms by other fast algorithms would be especially interesting if we

require only polynomial space usage.

Chapter 9
Iterative Compression and Exact Algorithms

And now for something completely different.

Monty Python

Iterative Compression has recently led to a number of breakthroughs in parameterized com-

plexity. The main purpose of this chapter is to show that iterative compression can also be used

in the design of exact exponential time algorithms. We exemplify our findings with algorithms

for the Maximum Independent Set problem, Minimum d-Hitting Set, #Minimum d-

Hitting Set (a counting version of Minimum d-Hitting Set) and the Maximum Induced

Cluster Subgraph problem. The algorithms for Minimum d-Hitting Set with k ≥ 4,

#Minimum d-Hitting Set with k ≥ 3 and Maximum Induced Cluster Subgraph are

the currently fastest known algorithms for these problems in the literature.

9.1 Background

Iterative Compression is a tool that has recently been used successfully in solving a number

of problems in the area of Parameterized Complexity. This technique was first introduced by

Reed et al. [RSV04] to solve the Odd Cycle Transversal problem, where one is interested

in finding a set of at most k vertices whose deletion makes the graph bipartite. Iterative

compression was used in obtaining faster FPT algorithms for Feedback Vertex Set, Edge

Bipartization and Cluster Vertex Deletion on undirected graphs [GGH+06, DFL+07,

CFL+08, HKMN08]. This technique has also led to an FPT algorithm for the Directed

Feedback Vertex Set problem [CLL+08], one of the longest open problems in the area of

parameterized complexity.

Typically iterative compression algorithms are designed for parameterized minimization

problems with a parameter, say k. Such algorithms proceed by iterating the so called compres-

sion step: given a solution of size k + 1, either compress it to a solution of size k or prove that

there is no solution of size k. To obtain an FPT algorithm, one has to solve the compression

step in time f(k)nO(1), where f is an arbitrary computable function, k is the parameter and n

is the length of the input. Technically speaking, almost all iterative compression based FPT

164 Iterative Compression and Exact Algorithms

algorithms with parameter k have f(k) ≥ 2k+1, as they all branch on all partitions (A,D) of a

k+1 sized solution S and look for a solution of size k with the restriction that it should contain

all elements of A and none of D.

Given the success of iterative compression in designing FPT algorithms, it is natural and

tempting to study its applicability in designing exact exponential time algorithms solving com-

putationally hard problems.

One simple way to obtain an exact exponential time algorithm from an FPT algorithm is

to use the latter for all possible values of the parameter k. In many cases this does not lead

to faster exact algorithms. Assuming that the largest (reasonable) value of the parameter k is

at least n, using a typical iterative compression based FPT algorithm does not seem to be of

much use for constructing an exact exponential time algorithm because we would end up with

an algorithm for the compression step having a factor of 2n in its worst-case running time; and

hence the established algorithm would not be better than trivial enumeration.

The main advantage of iterative compression is that it provides combinatorial algorithms

based on problem structures. While the improvement in the running time compared to (compli-

cated) branching algorithms is not so impressive, the simplicity and elegance of the arguments

allow them to be used in a basic algorithm course.

We exemplify this approach by the following results:

1. We show how to solve Maximum Independent Set for a graph on n vertices in time

O(1.3196n). While the running time of our iterative compression algorithm is slower than

the running times of branching algorithms [FGK09b, Rob86], this simple algorithm serves

as an introductory example to more complicated applications of the method.

2. We obtain the fastest known algorithms counting all minimum hitting sets of a family of

sets of an n-element ground set, when the size of each set is at most k ≥ 3 (#Minimum

d-Hitting Set). For the decision problem Minimum d-Hitting Set, our algorithms

are the fastest known algorithms for k ≥ 4. See Table 9.1 on page 171 for the precise

running times of these algorithms. For Minimum 4-Hitting Set, our O(1.8704n) algo-

rithm improves on previously published algorithms for this problem with running times

O(1.9646n) [Fer06, RSS07] and O(1.9799n) [RSS05].

3. We provide an algorithm to solve the Maximum Induced Cluster Subgraph problem

in time O∗(ϕn) where ϕ = (1 +
√

5)/2 < 1.6181 is the golden ratio. The only previous

algorithm for this problem we are aware of is the use of a complicated branching algorithm

of Wahlström [Wah07] for solving 3-Hitting Set (let us note that Maximum Induced

Cluster Subgraph is a special case of 3-Hitting Set, where every subset is a set of

vertices inducing a path of length 3), which results in a running time of O(1.6278n).

9.2 Maximum Independent Set

Maximum Independent Set is a very well studied problem in the area of exact exponential

time algorithms and many papers have been written on this problem [TT77, Rob86, Jia86,

9.2 Maximum Independent Set 165

ST90, Bei99, FGK09b]. It is customary that if we develop a new method then we first apply

it to well known problems in the area. Here, as an introductory example, we consider the

NP–complete problem Maximum Independent Set.

It is well–known that I is an independent set of a graph G if and only if V \ I is a vertex

cover of G, that is every edge of G has at least one end point in V \ I. Therefore Minimum

Vertex Cover is the complement of Maximum Independent Set in the sense that I is

a maximum independent set of G if and only if V \ I is a minimum vertex cover of G. This

fact implies that when designing exponential time algorithms we may equivalently consider

Minimum Vertex Cover. We proceed by defining a compression version of the Minimum

Vertex Cover problem.

Comp-MVC: Given a graph G = (V,E) with a vertex cover S ⊆ V , find a vertex cover

of G of size at most |S| − 1 if one exists.

Note that if we can solve Comp-MVC efficiently then we can solve Minimum Vertex Cover

efficiently by repeatedly applying an algorithm for Comp-MVC as follows. Given a graph

G = (V,E) on n vertices with V = {v1, v2, . . . , vn}, denote the set {v1, v2, . . . , vi} by Vi. Let

Gi := G[Vi] and let Ci be a minimum vertex cover of Gi. We start with G1 and put C1 = ∅.
Suppose that we already have computed Ci for the graph Gi for some i ≥ 1. We form an

instance of Comp-MVC with input graph Gi+1 and S = Ci ∪ {vi+1}. In this stage we either

compress the solution S which means that we find a vertex cover S ′ of Gi+1 of size |S| − 1 and

put Ci+1 := S ′, or (if there is no such S ′) we put Ci+1 := S.

Our algorithm is based on the following lemma.

Lemma 9.1. Let Gi+1 and S be given as above. If there exists a vertex cover Ci+1 of Gi+1 of

size |S| − 1, then it can be partitioned into two sets A and B such that

1. A ⊂ S is a minimal vertex cover of Gi+1[S].

2. B ⊆ (Vi+1 \ A) is a minimum vertex cover of the bipartite graph Gi+1 \ A.

Proof. Let Ci+1 be a vertex cover of Gi+1 of size |S| − 1. Its complement Vi+1 \ Ci+1 is an

independent set. We define A′ = Ci+1 ∩ S and B′ = Ci+1 \ A′. Then A′ is a vertex cover

of Gi+1[S] and |A′| ≤ |S| − 1. Let A ⊆ A′ be a minimal vertex cover of Gi+1[S]. We define

B = B′ ∪ (A′ \ A). Since A is a minimal vertex cover of Gi+1[S], we have that S \ A is

an independent set. This in turn implies that Gi+1 \ A is a bipartite graph with bipartition

(S \A, Vi+1 \ S). Finally, since Ci+1 is a minimum vertex cover of Gi+1, we conclude that B is

a minimum vertex cover of Gi+1 \ A.

Lemma 9.1 implies that the following algorithm solves Comp-MVC correctly.

Step 1 Enumerate all minimal vertex covers of size at most |S| − 1 of Gi+1[S] as a possible

candidate for A.

Step 2 For each minimal vertex cover A find a minimum vertex cover B of the bipartite graph

Gi+1 \ A (via the computation of a maximum matching in this bipartite graph [HK73]).

166 Iterative Compression and Exact Algorithms

Step 3 If the algorithm finds a vertex cover A∪B of size |S|−1 in this way, set Ci+1 = A∪B,

else set Ci+1 = S.

Steps 2 and 3 of the algorithm can be performed in polynomial time, and the running time

of Step 1, which is exponential, dominates the running time of the algorithm. To enumerate

all maximal independent sets or equivalently all minimal vertex covers of a graph in Step 1,

one can use the polynomial–delay algorithm of Johnson et al. [JYP88]; see Theorem 8.11 on

page 162.

For the running time analysis of the algorithm we need the 3n/3 bound on the number of

maximal independent sets or minimal vertex covers due to Moon and Moser (Theorem 3.5) and

the bound of Byskov (Theorem 8.7) stating that the maximum number of maximal independent

sets of size at most k in any graph on n vertices for k ≤ n/3 is

N [n, k] := bn/kc(bn/kc+1)k−n(bn/kc+ 1)n−bn/kck,

and that they can all be enumerated in time O∗(N [n, k]).

Since

max

{
max

0≤α≤3/4
(3αn/3), max

3/4<α≤1
(N [αn, (1− α)n])

}
= O∗(22n/5),

we have that by Theorems 3.5, 8.11, and 8.7, all minimal vertex covers of Gi+1[S] of size at

most |S| − 1 can be listed in time O∗(22n/5) = O(1.3196n).

Thus, the overall running time of the algorithm solving Comp-MVC is O(1.3196n). Since

the rounding of the base of the exponent dominates the polynomial factor of the other steps of

the iterative compression, we obtain the following theorem.

Theorem 9.2. The given algorithm for the problems Maximum Independent Set and Min-

imum Vertex Cover, established by iterative compression, has running time O(1.3196n) on

graphs of n vertices.

9.3 #d-Hitting Set

The Minimum Hitting Set problem is a generalization of Minimum Vertex Cover. Here,

given a family of sets over a ground set of n elements, the objective is to hit every set of the

family with as few elements of the ground set as possible. We study a version of the hitting set

problem where every set in the family has at most d elements.

Minimum d-Hitting Set : Given a universe V of n elements and a collection C of

subsets of V of size at most d, find a minimum hitting set of C. A hitting set of C is a

subset V ′ ⊆ V such that every subset of C contains at least one element of V ′.

A counting version of the problem is #Minimum d-Hitting Set that asks for the number

of different minimum hitting sets. We denote an instance of #Minimum d-Hitting Set by

9.3 #d-Hitting Set 167

(V, C). Furthermore we assume that for every v ∈ V , there exists at least one set in C containing

it.

We show how to obtain an algorithm to solve #Minimum d-Hitting Set using iterative

compression which uses an algorithm for #Minimum (d − 1)-Hitting Set as a subroutine.

First we define the compression version of the #Minimum d-Hitting Set problem.

Comp-#d-Hitting Set: Given a universe V of n elements, a collection C of subsets of

V of size at most d, and a (not necessarily minimum) hitting set H ′ ⊆ V of C, find a

minimum hitting set Ĥ of C and compute the number of all minimum hitting sets of C.

Lemma 9.3. Let O∗ ((ad−1)n) be the running time of an algorithm solving #Minimum (d−1)-

Hitting Set, where ad−1 > 1 is a constant. Then Comp-#d-Hitting Set can be solved in

time

O∗
(

2|H
′|(ad−1)|V |−|H

′|
)
.

Moreover, if |H ′| is greater than 2|V |/3 and the minimum size of a hitting set in C is at least

|H ′| − 1, then Comp-#d-Hitting Set can be solved in time

O∗
((

|H ′|
2|H ′| − |V |

)
(ad−1)|V |−|H

′|
)
.

Proof. To prove the lemma, we give an algorithm that, for each partition (N, N̄) ofH ′, computes

a minimum hitting set HN and the number hN of minimum hitting sets subject to the constraint

that these hitting sets contain all the elements of N and none of the elements of N̄ .

For every partition (N, N̄) of H ′, we either reject it as invalid or we reduce the instance

(V, C) to an instance (V ′, C ′) by applying the following two rules in the given order.

(H) If there exists a set Ci ∈ C such that Ci ⊆ N̄ then we refer to such a partition as invalid

and reject it (hN = 0).

(R) For all sets Ci with Ci ∩ N 6= ∅ set C := C \ Ci. In other words, all sets of C, which are

already hit by N , are removed.

Rule (H) is sound because if a set Ci ⊆ C is included in N̄ then no Ĥ ⊆ V \ N̄ contains an

element of Ci and thus there is no hitting set Ĥ ⊆ V \ N̄ . If a partition (N, N̄) of H ′ is not

invalid then the instance (V, C) can be reduced to the instance I ′ = (V ′, C ′), where V ′ = V \H ′

and C ′ = {X ∩ V ′ | X ∈ C and X ∩N = ∅}.
Summarizing, the instance I ′ is obtained by removing all the elements of V for which it has

already been decided if they are part of HN or not and all the sets that are hit by the elements

in N . To complete HN , it is sufficient to find a minimum hitting set of I ′ and to count the

number of minimum hitting sets of I ′. The crucial observation here is that I ′ is an instance

of #Minimum (d − 1)-Hitting Set. Indeed, H ′ is a hitting set of (V, C) and by removing

it we decrease the size of every set by at least one. Therefore, we can use an algorithm for

168 Iterative Compression and Exact Algorithms

#Minimum (d− 1)-Hitting Set to complete this step. When checking all partitions (N, N̄)

of H ′ it is straightforward to keep the accounting information necessary to compute a minimum

hitting set Ĥ and to count all minimum hitting sets.

Thus for every partition (N, N̄) of H ′ the algorithm solving #Minimum (d− 1)-Hitting

Set is called for the instance I ′. There are 2|H
′| partitions (N, N̄) of the vertex set H ′. For

each such partition, the number of elements of the instance I ′ is |V ′| = |V \H ′| = |V | − |H ′|.
Thus, the running time of the algorithm is

O∗
(

2|H
′|(ad−1)|V |−|H

′|
)
.

If |H ′| > 2|V |/3 and the minimum size of a hitting set in C is at least |H ′|− 1, then it is not

necessary to check all partitions (N, N̄) of H ′ and in this case we can speed up the algorithm as

the number of relevant partitions of H ′ becomes significantly smaller than 2|H
′|. Indeed, since

• |H ′| ≥ |Ĥ| ≥ |H ′| − 1, and

• |Ĥ ∩ (V \H ′)| ≤ |V | − |H ′|,

it is sufficient to consider only those partitions (N, N̄) of H ′ such that

|N | ≥ |H ′| − 1− (|V | − |H ′|) = 2|H ′| − |V | − 1.

In this case, the running time of the algorithm is

O∗
((

|H ′|
2|H ′| − |V |

)
(ad−1)|V |−|H

′|
)
.

This concludes the proof of the lemma.

The following lemma will be useful for the forthcoming running-time analysis.

Lemma 9.4. Let n be a natural number and a be a non-negative constant. The sum of the

terms
(

j
2j−n

)
an−j for j = 0, 1, . . . , n is upper bounded by

O∗
((

1 +
√

1 + 4ad−1

2

)n)
.

Proof. Let j = n −m. Then
(

j
2j−n

)
an−j can be rewritten as g(n,m) =

(
n−m
n−2m

)
am =

(
n−m
m

)
am.

By convention, we set g(n,m) = 0 whenever n < m. Denote by G(n) the sum
∑n

m=0 g(n,m).

By a well-known decomposition of binomial coefficients, g(n,m) =
((
n−m−1
m−1

)
+
(
n−m−1

m

))
am =

a · g(n− 2,m− 1) + g(n− 1,m). Thus G(n) ≤ G(n− 1) + a ·G(n− 2). Standard calculus yields

that this recurrence is asymptotically upper bounded by O∗(αn) where α is the largest positive

root of the polynomial x2 − x− a = 0, that is α = 1+
√

1+4a
2

.

Now we are ready to use iterative compression to prove the following theorem.

9.3 #d-Hitting Set 169

Theorem 9.5. Suppose there exists an algorithm to solve #Minimum (d − 1)-Hitting Set

in time O∗ ((ad−1)n), 1 < ad−1 ≤ 2. Then #Minimum d-Hitting Set can be solved in time

O∗
((

1 +
√

1 + 4ad−1

2

)n)
.

Proof. Let (V, C) be an instance of #Minimum d-Hitting Set, where V = {v1, v2, · · · , vn}.
For i = 1, 2, . . . , n, let Vi := {v1, v2, . . . , vi} and Ci := {X ∈ C | X ⊆ Vi}. Then Ii := (Vi, Ci)
constitutes an instance for the ith stage of the iteration. We denote by Hi and hi, a minimum

hitting set of an instance Ii and the number of different minimum hitting sets of Ii respectively.

If {v1} ∈ C, then H1 = {v1} and h1 = 1; otherwise H1 = ∅ and h1 = 0.

Consider the ith stage of the iteration. We have that |Hi−1| ≤ |Hi| ≤ |Hi−1|+ 1 because at

least |Hi−1| elements are needed to hit all the sets of Ii except those containing element vi and

Hi−1 ∪ {vi} is a hitting set of Ii. Now, use Lemma 9.3 with H ′ = Hi−1 ∪ {vi} to compute a

minimum hitting set of Ii. If |H ′| ≤ 2i/3, its running time is

O∗
(

max
0≤j≤2i/3

{
2j(ad−1)i−j

})
= O∗

(
22i/3(ad−1)i/3

)
,

as ad−1 ≤ 2. If |H ′| > 2i/3, the running time is

O∗
(

max
2i/3<j≤i

{(
j

2j − i

)
(ad−1)i−j

})
.

Since for every fixed j > 2i/3, and i, 1 ≤ i ≤ n,(
j

2j − i

)
(ad−1)i−j ≤

(
j

2j − n

)
(ad−1)n−j,

the worst case running time of the algorithm is

O∗
(

max

{
max
1≤i≤n

22i/3(ad−1)i/3, max
2n/3≤j≤n

{(
j

2j − n

)
(ad−1)n−j

}})
.

Finally,
(

2n/3
n/3

)
= 22n/3 up to a polynomial factor, and thus the running time is

O∗
(

max
2n/3≤j≤n

{(
j

2j − n

)
(ad−1)n−j

})
= O∗

((
1 +
√

1 + 4ad−1

2

)n)
by Lemma 9.4.

Based on the O(1.2377n) algorithm for #Minimum 2-Hitting Set [Wah07], we have the

following corollary.

Corollary 9.6. #Minimum 3-Hitting Set can be solved in time O(1.7198n).

The same approach can be used design an algorithm for the optimization version Minimum

d-Hitting Set, assuming that an algorithm for Minimum (d− 1)-Hitting Set is available.

170 Iterative Compression and Exact Algorithms

Based on the O(1.6278n) algorithm for Minimum 3-Hitting Set [Wah07] this leads to an

O(1.8704n) time algorithm for solving Minimum 4-Hitting Set.

Corollary 9.7. Minimum 4-Hitting Set can be solved in time O(1.8704n).

In the following theorem we provide an alternative approach to solve #Minimum d-Hitting

Set. This is a combination of brute force enumeration (for sufficiently large hitting sets) with

one application of the compression algorithm of Lemma 9.3. For large values of ad−1, more

precisely for ad−1 ≥ 1.6553, this approach gives faster algorithms than the one obtained by

Theorem 9.5.

Theorem 9.8. Suppose there exists an algorithm with running time O∗((ad−1)n), 1 < ad−1 ≤ 2,

solving #Minimum (d − 1)-Hitting Set. Then #Minimum d-Hitting Set can be solved

in time

min
0.5≤α≤1

max

{
O∗
((

n

αn

))
,O∗

(
2αn(ad−1)n−αn

)}
.

Proof. First the algorithm tries all subsets of V of size bαnc and identifies those that are a

hitting set of I.

Now there are two cases. In the first case, there is no hitting set of this size. Then the

algorithm verifies all sets of larger size whether they are hitting sets of I. It is straightforward

to keep some accounting information to determine the number of hitting sets of the smallest

size found during this enumeration phase. The running time of this phase is

O∗
 n∑
i=bαnc

(
n

i

) = O∗
((

n

αn

))
.

In the second case, there exists a hitting set of size bαnc. Then count all minimum hitting

sets using the compression algorithm of Lemma 9.3 with H ′ being a hitting set of size bαnc
found by the enumeration phase. By Lemma 9.3, this phase of the algorithm has running time

O∗
(
2αn(ad−1)n−αn

)
.

By combining the enumeration and compression phases of the algorithm, we obtain the running

time claimed in the theorem.

The best running times of algorithms solving #Minimum d-Hitting Set and Minimum d-

Hitting Set are summarized in Table 9.1. For #Minimum d-Hitting Set, k ≥ 4, and

Minimum d-Hitting Set, k ≥ 5, we use the algorithm of Theorem 9.8. Note that the

Minimum 2-Hitting Set problem is equivalent to Minimum Vertex Cover and Maximum

Independent Set.

Finally, it is worth to note that the technique can also be used to solve the parameterized

version of d-Hitting Set. Namely, we consider the following problem:

(k, d)-Hitting Set: Given a universe V of n elements, a collection C of subsets of V of

size at most d and an integer k, find a hitting set of size at most k of C, if one exists.

9.4 Maximum Induced Cluster Subgraph 171

d #Minimum
d-Hitting Set

Minimum
d-Hitting Set

2 O(1.2377n) [Wah07] O(1.2108n) [Rob86]
3 O(1.7198n) O(1.6278n) [Wah07]
4 O(1.8997n) O(1.8704n)
5 O(1.9594n) O(1.9489n)
6 O(1.9824n) O(1.9781n)
7 O(1.9920n) O(1.9902n)

Table 9.1: Running times of the algorithms for #Minimum d-Hitting Set and Minimum
d-Hitting Set

Theorem 9.9. Suppose there exists an algorithm to solve (k, d − 1)-Hitting Set in time

(ad−1)k ·nO(1), where ad−1 ≥ 1. Then (k, d)-Hitting Set can be solved in time (1+ad−1)k ·nO(1).

Proof. The proof is very similar to the one of Theorem 9.5 except that the size of a solution

is now bounded by the parameter k instead of n. Given a universe V = {v1, v2, . . . , vn} and

a collection C, for i = 1, 2, . . . , n, let Vi = {v1, v2, . . . , vi} and Ci = {X ∈ C | X ⊆ Vi}. Then

Ii = (Vi, Ci) constitutes an instance of (k, d)-Hitting Set for the ith stage of the iteration. We

denote by Hi a hitting set of size at most k, if one exists, of the instance Ii.

Clearly, if {v1} ∈ C, then H1 = {v1} (assuming that k ≥ 1); otherwise H1 = ∅ and h1 = 0.

Consider now the ith stage of the iteration. The relation |Hi−1| ≤ |Hi| ≤ |Hi−1|+ 1 ≤ k + 1

holds since at least |Hi−1| elements are needed to hit all the sets of Ii except those containing

element vi and Hi−1 ∪ {vi} is a hitting set of Ii.

As we did in Lemma 9.3, for every partition (N, N̄) of Hi−1 ∪ {vi} we apply the rules

(H) and (R) (see the proof of Lemma 9.3). Each not rejected partition (N, N̄) leads to

an instance I ′i = (V ′i , C ′i) of (k − |N |, d − 1)-Hitting Set, where V ′i = Vi \ (Hi−1 ∪ {vi}) and

C ′i = {X∩V ′i |X ∈ Ci and X∩N = ∅}. Thus, by using an algorithm for (k−|N |, d−1)-Hitting

Set, a solution for I ′i of size at most k − |N | can be found, if one exists. The exponential part

of the overall running time is given by the formula
∑k

i=0

(
k+1
i

)
(ad−1)k−i ≤ 2 · (1 + ad−1)k.

In particular, an immediate consequence of the previous theorem is the following.

Corollary 9.10. Suppose there exists an algorithm to solve (k, 3)-Hitting Set in time ak3 ·
nO(1). Then, for any fixed d ≥ 4, (k, d)-Hitting Set can be solved in time (a3 +d−3)k ·nO(1).

By using a 2.0755k ·nO(1) time algorithm by Wahlström [Wah07] for solving (k, 3)-Hitting

Set, we obtain the running times in Table 9.2 for d = 4 and d = 5, which are currently the

best known algorithms.

9.4 Maximum Induced Cluster Subgraph

Clustering objects according to given similarity or distance values is an important problem in

computational biology with diverse applications, for example in defining families of ortholo-

gous genes, or in the analysis of microarray experiments [DLL+06, FLRS07, Guo09, RWB+07,

172 Iterative Compression and Exact Algorithms

d (k, d)-Hitting Set

2 1.2738k · nO(1) [CKX06]

3 2.0755k · nO(1) [Wah07]

4 3.0755k · nO(1)

5 4.0755k · nO(1)

6 5.0640k · nO(1) [Fer06]

7 6.0439k · nO(1) [Fer06]

Table 9.2: Running times of the best known algorithms solving (k, d)-Hitting Set for various
values of d. The algorithms for 4 ≤ d ≤ 5 are based on Corollary 9.10.

HKMN08]. A graph theoretic formulation of the clustering problem is called Cluster Edit-

ing. To define this problem we need to introduce the notion of a cluster graph. A graph is

called a cluster graph if it is a disjoint union of cliques. In the most common parameterized

version of Cluster Editing, given an input graph G = (V,E) and a parameter k, the question

is whether the input graph G can be transformed into a cluster graph by adding or deleting

at most k edges. This problem has been extensively studied in the realm of parameterized

complexity [DLL+06, FLRS07, Guo09, RWB+07]. In this section, we study a vertex version of

Cluster Editing. We study the following optimization version of the problem.

Maximum Induced Cluster Subgraph: Given a graph G = (V,E) on n vertices,

find a maximum size subset C ⊆ V such that G[C] is a cluster graph.

Due to the following well–known observation, the Maximum Induced Cluster Subgraph

problem is also known as Maximum Induced P3-free Subgraph.

Observation 9.11. A graph is a disjoint union of cliques if and only if it contains no induced

subgraph isomorphic to the graph P3.

Clearly, C ⊆ V induces a cluster graph in G = (V,E) (that is G[C] is a disjoint union of cliques

of G) if and only if S := V \ C hits all induced paths on three vertices of G. Thus solving

the Maximum Induced Cluster Subgraph problem is equivalent to finding a minimum

size set of vertices whose removal produces a maximum induced cluster subgraph of G. By

Observation 9.11, this reduces to finding a minimum hitting set S of the collection of vertex

sets of (induced) P3’s of G. Such a hitting set S is called a P3-HS.

As customary when using iterative compression, we first define a compression version of the

Maximum Induced Cluster Subgraph problem.

Comp-MICS: Given a graph G = (V,E) on n vertices and a P3-HS S ⊆ V , find a

P3-HS of G of size at most |S| − 1 if one exists.

9.4 Maximum Induced Cluster Subgraph 173

Theorem 9.12. Comp-MICS can be solved in time O(ϕn) where ϕ = (1 +
√

5)/2 < 1.6181 is

the golden ratio.

Proof. For the proof we distinguish two cases based on the size of S.

Case 1: If |S| ≤ 2n/3 then the following algorithm which uses matching techniques is applied.

Step 1 Enumerate all partitions of (N, N̄) of S.

Step 2 For each partition, compute a maximum set C ⊆ V such that G[C] is a cluster graph,

subject to the constraints that N ⊆ C and N̄ ∩ C = ∅, if such a set C exists.

In Step 2, we reduce the problem of finding a maximum sized C to the problem of finding

a maximum weight matching in an auxiliary bipartite graph.1

If G[N] contains an induced P3 then there is obviously no C ⊆ V inducing a cluster graph

that respects the partition (N, N̄). We call such a partition invalid.

Otherwise, G[N] is a cluster graph, and thus the goal is to find a maximum size subset

C ′ of S := V \ S such that G[C ′ ∪ N] is a cluster graph. Fortunately, such a set C ′ can be

computed in polynomial time by reducing the problem to finding a maximum weight matching

in an auxiliary bipartite graph.

First we describe the construction of the bipartite graph. Consider the graph G[N ∪S] and

note that G[N] and G[S] are cluster graphs. Now the following reduction rule is applied to the

graph G[N ∪ S].

(R) Remove every vertex b ∈ S for which G[N ∪ {b}] contains an induced P3.

Clearly all vertices removed by (R) cannot belong to any C ′ inducing a cluster subgraph of G.

Let Ŝ be the subset of vertices of S which are not removed by (R). Hence the current graph

is G[N ∪ Ŝ]. Clearly G[Ŝ] is a cluster graph since G[S] is one. Further, note that no vertex of

Ŝ has neighbors in two different maximal cliques of G[N] and if a vertex of Ŝ has a neighbor

in one maximal clique of G[N] then it is adjacent to each vertex of this maximal clique. Thus,

every vertex in Ŝ has either no neighbor in N or it is adjacent to all the vertices of exactly one

maximal clique of G[N].

Now we are ready to define the auxiliary bipartite graph G′ = (A,B,E ′). Let {C1, C2, . . . , Cr}
be the maximal cliques of the cluster graph G[N]. Let {C ′1, C ′2, . . . , C ′s} be the maximal cliques of

the cluster graph G[Ŝ]. Let A := {a1, a2, . . . , ar, a
′
1, a
′
2, . . . , a

′
s} and B := {b1, b2, . . . , bs}. Here,

for all i ∈ {1, 2, . . . , r}, each maximal clique Ci of G[N] is represented by ai ∈ A; and for all

j ∈ {1, 2, . . . , s}, each maximal clique C ′j of G[Ŝ] is represented by a′j ∈ A and by bj ∈ B.

Now there are two types of edges in G′: ajbk ∈ E ′ if there is a vertex u ∈ C ′k such that u

has a neighbor in Cj, and a′jbj ∈ E ′ if there is a vertex u ∈ C ′j such that u has no neighbor in

N . Finally we define the weights for both types of edges in the bipartite graph G′. For an edge

ajbk ∈ E ′, its weight w(ajbk) is the number of vertices in C ′k being adjacent to all vertices of the

1Hüffner et al. [HKMN08] obtain among others an FPT algorithm for the vertex weighted version
of Cluster Vertex Deletion using iterative compression. In their compression step they use the
natural idea of reduction to weighted bipartite matching as well.

174 Iterative Compression and Exact Algorithms

maximal clique Cj. For an edge a′jbj, its weight w(a′jbj) is the number of vertices in C ′j without

any neighbor in N .

This transformation is of interest due to the following claim that uses the above notation.

Claim 9.13. The maximum size of a subset C ′ of Ŝ such that G[N ∪ C ′] is a cluster subgraph

of the graph G∗ = G[N ∪ Ŝ] is equal to the maximum total weight of a matching in the bipartite

graph G′ = (A,B,E ′).

Proof. We first show that any matching in G′ corresponds to a set Y ⊆ Ŝ that together with

N induces a cluster subgraph of G∗, that is, G[N ∪ Y] is a P3-free graph. To see this, let

M := {e1, e2, . . . , et} be a matching in G′. Now if el = ajbk then Yl is the set of vertices in C ′k
which are adjacent to all vertices of the maximal clique Cj. Otherwise, if el = a′jbj then Yl is

the set of vertices in C ′j which have no neighbor in N . Now let us set Y :=
⋃t
l=1 Yl. Clearly,

|Y | =
∑t

l=1 w(el). We claim that G[N ∪ Y] is a disjoint union of cliques. To the contrary,

suppose there exists an induced P3 in G[N ∪ Y], say P = xyz is an induced P3 in G[N ∪ Y].

Then two of the vertices of P are in Y and one in N because of rule (R) and the fact that G[Ŝ]

is a cluster graph. First let x, z ∈ Y , y ∈ N , x ∈ C ′t1 , y ∈ Ct2 , and z ∈ C ′t3 . This means selecting

edges at2bt1 and at2bt3 in M . Secondly, let x, y ∈ Y and z ∈ N , and thus x and y belong to the

same clique C ′t1 , and z ∈ Ct2 . This means having edges at2bt1 and a′t1bt1 in M . In both cases

this contradicts M being a matching. Consequently if there is a matching M ′ in G∗ of weight

k then there is a set Y ⊆ Ŝ of size k such that G[N ∪ Y] is a cluster graph.

To prove the other direction, let {F1,F2, . . . ,Fq} be the maximal cliques of the cluster graph

G[C ′], and let {F ′1,F ′2, . . . ,F ′p} be the maximal cliques of the cluster graph G[N ∪C ′]. Clearly,

each F ′j, 1 ≤ j ≤ p, contains at most one of {F l : 1 ≤ l ≤ q}. Let π(l) be the integer such that

Fl ⊆ F ′π(l). If Fl = F ′π(l) then set el := a′lbl. Otherwise, if Fl ⊂ F ′π(l) then set el := aπ(l)bl. Since

π is injective, M = {e1, e2, . . . , eq} is a matching in G′ and the definition of the weights of the

edges in G′ implies that the total weight of M is
∑q

l=1w(el) = |C ′|. Thus there is a matching

of G′ of total weight |C ′|.

Note that the construction of the bipartite graph G′, including the application of (R) and the

computation of a maximum weighted matching of G′ can be performed in time O(n3) [EK72].

Thus, the running time of the algorithm in Case 1 is the time needed to enumerate all subsets

of S (whose size is bounded by 2n/3) and this is O∗(22n/3) = O(1.5875n).

Case 2: If |S| > 2n/3 then the algorithm needs to find a P3-HS of G of size |S| − 1, or show

that none exists.

The algorithm proceeds as in the first case. Note that at most n− |S| vertices of V \ S can

be added to N . Therefore, the algorithm verifies only those partitions (N, N̄) of S satisfying

|N | ≥ |S| − 1− (n− |S|) = 2|S| − n− 1. In this second case, the worst-case running time is

O∗
(

max
2/3<α≤1

{(
αn

(2α− 1)n

)})
= O∗

((
1 +
√

5

2

)n)

by Lemma 9.4.

Now we are ready to prove the following theorem using iterative compression.

9.5 Conclusion 175

Theorem 9.14. Maximum Induced Cluster Subgraph can be solved in time O∗(ϕn)

where ϕ = (1 +
√

5)/2 < 1.6181 is the golden ratio.

Proof. Given a graphG = (V,E) with V = {v1, v2, . . . , vn}, let Vi := {v1, v2, . . . , vi}, Gi := G[Vi]

and let Ci be a maximum induced cluster subgraph of Gi. Let Si := Vi \ Ci.
The algorithm starts with G1, C1 = {v1} and S1 = ∅. At the ith iteration of the algorithm,

1 ≤ i ≤ n, we maintain the invariant that we have at our disposal Ci−1, a maximum set inducing

a cluster subgraph of Gi−1, and Si−1, a minimum P3-HS of Gi−1. Note that Si−1 ∪ {vi} is a

P3-HS of Gi and that no P3-HS of Gi has size smaller than |Si−1|. Now use the algorithm

of Lemma 9.12 to solve Comp-MICS on Gi with S = Si−1 ∪ {vi}. Then the worst case

running time is attained at the nth stage of the iteration and the running time is O∗(ϕn) where

ϕ = (1 +
√

5)/2.

9.5 Conclusion

Iterative compression is a technique which is successfully used in the design of FPT algorithms.

In this chapter we show that this technique can also be used to design exact exponential time

algorithms. This suggests that it might be used in other areas of algorithms as well. For

example, how useful can iterative compression be in the design of approximation algorithms?

Carrying over techniques from the design of FPT algorithms to the design of exact expo-

nential time algorithms and vice–versa is a natural and tempting idea. A challenging question

in this regard is whether measure based analyses can fully be adapted for the analysis of FPT
branching algorithms. First results on this topic are discussed in [Gas09].

A question related to the minimization and counting problems of Minimum d-Hitting

Set is to upper bound the maximum number of minimal d-hitting sets. A simple branching

algorithm [Gas05] shows that this number can be upper bounded by O(cnk) where ck is the

positive real root of
∑k

i=1 x
−i − 1.

Open Question. Upper bound the number of minimal d-hitting sets by c′k where c′k < ck for

all or some values of k ≥ 3.

176 Iterative Compression and Exact Algorithms

Chapter 10
Conclusion

With every new answer unfolded, science has
consistently discovered at least three new
questions.

Wernher von Braun

In this text we designed exponential time algorithms for various hard problems and proved

upper bounds on the running time of these algorithms. For some of them we provided lower

bounds on their worst–case running time. Besides decision and optimization problems, we also

considered counting and enumeration problems. General methods to design exponential time

algorithms have been developed by combining existing methods, like branching, enumeration

of objects and treewidth based algorithms. Moreover, the technique of iterative compression

has been used to design faster exponential time algorithms.

As we demonstrated in Section 3.5, methods to analyze exponential time algorithms can

also be used to derive combinatorial bounds on mathematical objects. Another example of this

is an algorithmic proof of the famous Moon–Moser Theorem (Theorem 3.5) stating that the

number of maximal independent sets in a graph G = (V,E) on n vertices is at most 3n/3. In

a Dagstuhl seminar, Kratsch [Kra07] presented the following outline of an alternative proof for

this theorem by an algorithm for enumerating all maximal independent sets. If V 6= ∅, then

choose a vertex v of minimum degree in G and for each u ∈ N [v], add u to each set produced

by a recursive call on the instance G \ N [u]. To bound the number of leafs in the search tree

of the algorithm, the strongest constraint

(∀d : 0 ≤ d ≤ n− 1) T (n) ≥ (d+ 1) · T (n− (d+ 1))

is obtained for branching on vertices of degree d = 2 and gives the upper bound of 3n/3 on the

maximum number of maximal independent sets in a graph on n vertices.

One possible topic of further research would be the design of exponential or subexponential

time approximation algorithms. For the Bandwidth problem, Fürer et al. [FGK09c] present

a factor 2 approximation algorithm with running time O(1.9797n). In this line, the natural

178 Conclusion

question arises asking which approximation guarantees can be achieved in subexponential time

under some reasonable complexity–theoretic assumptions.

Open Question. Find a subexponential factor 2 approximation algorithm for the Bandwidth

problem, or prove that none can exist under the Exponential Time Hypothesis.

The obvious difficulty for branching algorithms that was already mentioned a few times is

that the analysis tools that are currently available do usually not provide provably tight bounds

on the running times of algorithms. Both the derived upper bounds and the lower bounds on

the running times of these algorithms might not be tight. How and if this question will be

settled for specific algorithms, or in general, is difficult to predict and is a real challenge.

Lower bounds for the worst–case running time of branching algorithms are usually achieved

by exhibiting explicit instances, generated from small graphs, for which the algorithm has

high running time. Are there other methods to prove lower bounds on the running time of

these algorithms? Here methods similar to the measure–based analysis, but working in a best–

case scenario instead of a worst–case scenario, together with constraints saying which local

configurations may be selected after which branching, could maybe help narrowing the gap

between lower and upper bounds on the worst–case running time of an algorithm.

Another further research direction that has been partly pioneered [Rob01, FK04, Kul05] is

automated algorithm design and analysis for branching algorithms. In my opinion, the progress

that has been made so far does not yet allow a measure of problem instances that is flexible

enough. By fixing a measure, it is easy to make a program run through all possible local

configurations and identify the worst ones. By fixing a set of local configurations, it is also

easy to make a program compute an optimal measure. The main problem is here that ideally,

we do not wish to fix either the measure, nor the set of local configurations. A possibility

might however be to fix an initial set of local configurations, compute an optimal measure

for them, identify the worst local configurations, propose better strategies for these hard cases,

and automatically or with human interaction, try to improve them. A considerable effort would

ideally be spent to simplify the case analysis as much as possible and the correctness of the

resulting algorithm and its analysis would be automatically established, for example using the

B Method [Abr96].

Glossary

biclique: Given a graph G = (V,E) and a vertex set V ′ ⊆ V , V ′ is an (induced) biclique of G

if and only if G[V ′] is complete bipartite. 20, 35

bipartite: A graph G = (V,E) is bipartite if and only if its vertex set can be partitioned into

two independent sets. A partition (A,B) of V into independent sets is called a bipartition

of G. G is then often denoted by G = (A,B,E). 20, 143, 155, 163

bipartite complement: The bipartite complement of a bipartite graph G = (A,B,E) is a

bipartite graph having the vertices of G as its vertex set and the non-edges of G with an

endpoint in A and another in B as its edge set. 67

clique: Given a graph G = (V,E), a clique in G is a subset V ′ ⊆ V of vertices such that G[V ′]

induces a complete graph. 20, 66, 148, 172

clique number: The clique number ω(G) of a graph G is the size of the largest clique in G.

150

closed k-neighborhood: The closed k-neighborhood of a vertex v in a graph G is Nk
G[v] :=⋃

i=0..kN
i
G(v). 71

closed neighborhood: The closed neighborhood of a vertex v in a graph G is NG[v] :=

{u} ∪NG(v). 22, 32, 70, 111, 146

coloring: Given a graph G = (V,E), a coloring of V is a function from V to a set of colors

(integers) such that every two adjacent vertices in G are mapped to a different color. A

k-coloring is a coloring using exactly k colors. 183, 184

complete: A graph G is complete if and only if there is an edge between each pair of vertices

in G. A complete graph on n vertices is denoted by Kn. 111, 148

complete bipartite: A graph is complete bipartite if and only if it is bipartite with bipartition

(A,B) and every vertex of A is adjacent to every vertex of B. A complete bipartite graph

such that the sets of its bipartition have size x and y is denoted Kx,y. 65

connected: A graph G is connected if there is a walk between every two vertices of G. 105

180 Glossary

connected component: Maximal connected subgraph. 32, 98, 131

cycle: 2-regular connected graph. A cycle on n vertices is denoted Cn. 32

degree: The degree of a vertex v in a graph G is dG(v) := |NG(v)|. 32, 54, 129, 144, 154

distance: Given a graph G and two vertices u, v ∈ V , the distance between u and v is the

length of the shortest walk minus one between u and v, that is the minimum number of

edges needed to be traversed to reach v from u and is denoted by distG(u, v). 35

dominating set: Given a graph G = (V,E) and a vertex set V ′ ⊆ V , V ′ is a dominating set

of G if and only if every vertex in V \ V ′ has a neighbor in V ′. 20, 184, 185

domination number: The domination number γ(G) of a graph G is the size of the smallest

dominating set in G. 147

dual degree: The dual degree of a vertex v in a graph G is the sum of the degrees of its

neighbors
∑

u∈N(v) dG(u). 70

feedback vertex set: Given a graph G = (V,E) and a vertex set V ′ ⊆ V , V ′ is a feedback

vertex set of G if and only if G \ V ′ is a forest. 20, 51, 184

forest: Acyclic graph. 52

graph: A (simple, undirected) graph G is an ordered pair (V,E) of a set V of vertices and a

set E of edges, where E is a set of unordered pairs of distinct vertices. Its vertex set is

V (G) = V and its edge set is E(G) = E. 17, 87, 129, 143, 153, 163

independent set: Given a graph G = (V,E) and a vertex set V ′ ⊆ V , V ′ is an independent

set of G if and only if G[V ′] has no edges. 16, 32, 54, 65, 108, 165, 184, 185

induced subgraph: Given a graph G = (V,E) and a vertex set V ′ ⊆ V , the subgraph of G

induced on V ′ is the graph G[V ′] := (V ′, {uv ∈ E : u, v ∈ V ′}). 35, 65, 145, 172

isomorphism: An isomorphism of two graphs G and H is a bijection between their vertex sets

f : V (G)→ V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). 35, 82, 172, 185

logical Kronecker delta: Kδ(·) returns 1 if its argument is true and 0 otherwise. 38, 72, 91

maximum degree: The maximum degree of a graph G = (V,E) is ∆(G) := maxv∈V dG(v).

18, 32, 52, 130, 143, 155

minimum degree: The minimum degree of a graph G = (V,E) is δ(G) := minv∈V dG(v). 70

open k-neighborhood: The (open) k-neighborhood of a vertex v in a graph G = (V,E) is

Nk
G(v) := {u ∈ V : u is at distance k from v}. 37, 67, 109

Glossary 181

open neighborhood: The (open) neighborhood of a vertex v in a graph G = (V,E) is

NG(v) := {u ∈ V : uv ∈ E}. 22, 32, 53, 67, 97, 131, 143, 155, 173

path: Tree with maximum degree 2. A path on n vertices is denoted Pn. The word path may

also refer to a walk with no repeated vertices. 32, 129, 164, 184

regular: A graph is d-regular if each of its vertices has degree d. A graph is regular if it is

d-regular for some d. 46, 88, 130

subgraph: A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). 36,

185

tree: Acyclic, connected graph. 24, 42, 129

vertex cover: Given a graph G = (V,E), a vertex set V ′ ⊆ V is a vertex cover of G if and

only if each edge of G is incident to at least one vertex of V ′. 25, 165, 185

vertex removal: Given a graph G = (V,E) and a vertex set V ′ ⊆ V , the graph obtained from

removing V ′ from G is G \ V ′ := G[V \ V ′]. If V ′ = {u}, we may write G \ u instead of

G \ {u}. 20, 32, 51, 67, 98, 131, 155

walk: Sequence of vertices, with each vertex being adjacent to the vertices immediately pre-

ceding and succeeding it in the sequence. 179–181

182 Glossary

Problem Definitions

(d, l)-CSP

Given a set of variables V , a domain D of cardinality d, and a set of l-constraints C,

that is relations between the values of the variables specifying the allowed combinations

of values for a subset of size at most l of variables, determine if there exists a satisfying

assignment for the variables. 19

k-Coloring

Given a graph G, determine if there is a coloring of G with at most k colors. 17

k-Sat

Given a boolean formula in conjunctive normal form where each clause has at most k

literals, determine if there is an assignment of its variables such that the formula evaluates

to true. 17

#Sat

Given a boolean formula, determine the number of different assignments of its variables

such that the formula evaluates to true. 69

Bandwidth

Given a graph G = (V,E) on n vertices, find a linear arrangement L : V → {1, . . . , n}
of its vertices such that the maximum stretch max{u,v}∈E{|L(u) − L(v)|} of the edges is

minimized. 22

Binary Knapsack

Given a knapsack of capacity c > 0 and n items where each item u has a value v(u) > 0

and a weight w(u) > 0, find a subset of items S that fit into the knapsack,
∑

u∈S w(u) ≤ c,

and the total value,
∑

u∈S v(u), is maximized. 17

CSP

Given a set of variables V , a domain D, and a set of constraints C, that is relations

between the values of the variables specifying the allowed combinations of values for a

subset of variables, determine if there exists a satisfying assignment for the variables. 19

184 Problem Definitions

Chromatic Number

Given a graph G, find the minimum number of colors needed for a coloring of G. 17, 52,

153

Exact Hitting Set

Given a universe U of elements and a collection S of subsets of U , determine if there exists

a subset of elements in U such that each set of S contains exactly one of these elements.

22

Feedback Vertex Set

Given a graph G, find a feedback vertex set of G of minimum cardinality. 20, 28, 52

Graph Homomorphism

Given two graphs G and H on at most n vertices each, determine if there exists a mapping

ϕ : V (G)→ V (H) such that for every x, y ∈ V (G), uv ∈ E(G) implies ϕ(u)ϕ(v) ∈ E(H).

19

Hamiltonian Cycle

Given a graph G, determine if G has a cycle that visits each vertex exactly once and

returns to the starting vertex. 18

Hamiltonian Path

Given a graph G, determine if G has a path that visits each vertex exactly once. 17

Max k-Sat

Given a boolean formula in conjunctive normal form where each clause has at most k

literals, find an assignment of its variables satisfying a maximum number of clauses. 29,

85

Max 2-CSP

Given a (2, 2)-CSP instance, find an assignment of the variables satisfying a maximum

number of constraints. 23, 85

Max Cut

Given a graph G = (V,E), find a subset of vertices A ⊆ V with a maximum number of

edges with one endpoint in A and the other in V \ A. 23

Maximum Independent Set

Given a graph G, find an independent set of G of maximum cardinality. 16, 32, 52

Minimum d-Hitting Set

Given a universe U of elements and a collection S of subsets of size at most d of U , find a

minimum number of elements in U such that each set of S contains at least one of these

elements. 26

Minimum Dominating Set

Given a graph G, find a dominating set of G of minimum cardinality. 26, 52, 143

Problem Definitions 185

Minimum Hitting Set

Given a universe U of elements and a collection S of subsets of U , find a minimum number

of elements in U such that each set of S contains at least one of these elements. 19

Minimum Independent Dominating Set

Given a graph G, find a set of vertices that is an independent set and a dominating set

of G of minimum cardinality. 152

Minimum Set Cover

Given a universe U and a collection S of subsets of U , find a minimum number of subsets

in S such that their union is equal to U . 19, 143

Minimum Vertex Cover

Given a graph G, find an vertex cover of G of minimum cardinality. 25

Quadratic Assignment

Given a set P of n facilities, a set L of n locations, a weight function w : P × P → R,

and a distance function d : L× L→ R, find an assignment f : P → L such that the cost∑
a,b∈P w(a, b) · d(f(a), f(b)) is minimized. 19

Sat

Given a boolean formula, determine if there is an assignment of its variables such that

the formula evaluates to true. 19

Subgraph Isomorphism

Given two graphs G1 and G2 where n is the number of vertices of G2, determine whether

G1 is isomorphic to a subgraph of G2. 19

Subset Sum

Given a set of integers S, determine if there is a non–empty subset of S that sums up to

zero. 22

Traveling Salesman

Given a set {1, . . . , n} of n cities and the distance d(i, j) between every two cities i and

j, find a tour visiting all cities with minimum total distance. A tour is a permutation of

the cities starting and ending in city 1. 17

Treewidth

Given a graph, determine its treewidth. The notion of treewidth is defined in Chapter 6.

20

186 Problem Definitions

Bibliography

[AAC+04] Gabriela Alexe, Sorin Alexe, Yves Crama, Stephan Foldes, Peter L. Hammer, and

Bruno Simeone, Consensus algorithms for the generation of all maximal bicliques,

Discrete Applied Mathematics 145 (2004), 11–21. 66

[ABF+02] Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Nie-

dermeier, Fixed parameter algorithms for dominating set and related problems on

planar graphs, Algorithmica 33 (2002), no. 4, 461–493. 24

[Abr96] Jean-Raymond Abrial, The B-book: Assigning programs to meanings, Cambridge

University Press, 1996. 178

[ACG+99] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto

Marchetti-Spaccamela, and Marco Protasi, Complexity and approximation : com-

binatorial optimization problems and their approximability properties, Springer,

1999. 16

[AJ03] Ola Angelsmark and Peter Jonsson, Improved algorithms for counting solutions in

constraint satisfaction problems, Proceedings of the 9th International Conference

on Principles and Practice of Constraint Programming (CP 2003), Lecture Notes

in Computer Science, vol. 2833, Springer, Berlin, 2003, pp. 81–95. 24, 154

[Alb02] Jochen Alber, Exact algorithms for NP-hard problems on networks: Design, anal-

ysis, and implementation, Ph.D. thesis, Universität Tübingen, Germany, 2002.

81

[Ang05] Ola Angelsmark, Constructing algorithms for constraint satisfaction and related

problems: Methods and applications, Ph.D. thesis, Linköping University, Sweden,

2005. 18, 24, 32

[AT06] Ola Angelsmark and Johan Thapper, Partitioning based algorithms for some

colouring problems, Recent Advances in Constraints, Revised Selected and In-

vited Papers of the 10th Joint ERCIM/CoLogNET International Workshop on

Constraint Solving and Constraint Logic Programming (CSCLP 2005), Lecture

Notes in Computer Science, vol. 3978, Springer, Berlin, 2006, pp. 44–58. 24, 63

188 BIBLIOGRAPHY

[AVAD76] Georgi Adel’son-Vel’skii, Vladimir Arlazarov, and Mikhail Donskoi, Pro-

gramirovanie igr (programming of games), Nauka, Moscow, 1976, in Russian. 15

[AVJ98] Jérôme Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen, Complex-

ity of minimum biclique cover and minimum biclique decomposition for bipartite

domino-free graphs, Discrete Applied Mathematics 86 (1998), 125–144. 66

[BBF99] Vineet Bafna, Piotr Berman, and Toshihiro Fujito, A 2-approximation algorithm

for the undirected feedback vertex set problem, SIAM Journal on Discrete Mathe-

matics 12 (1999), no. 3, 289–297. 51

[BE95] Richard Beigel and David Eppstein, 3-coloring in time O(1.3446n): A no-MIS al-

gorithm, Proceedings of the 36th Symposium on Foundations of Computer Science

(FOCS 1995), IEEE, 1995, pp. 444–452. 17

[BE05] , 3-coloring in time O(1.3289n), Journal of Algorithms 54 (2005), no. 2,

168–204. 154, 160

[BECF+06] Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston,

Shev Mac, and Frances A. Rosamond, The undirected feedback vertex set problem

has a poly(k) kernel, Proceedings of the 2nd International Workshop on Parameter-

ized and Exact Computation (IWPEC 2006), Lecture Notes in Computer Science,

vol. 4169, Springer, Berlin, 2006, pp. 192–202. 51

[Bei70] Lowell W. Beineke, Characterizations of derived graphs, Journal of Combinatorial

Theory, Series B 9 (1970), 129–135. 63

[Bei99] Richard Beigel, Finding maximum independent sets in sparse and general

graphs, Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms

(SODA 1999), ACM and SIAM, 1999, pp. 856–857. 17, 47, 63, 165

[Ber84] Alan A. Bertossi, Dominating sets for split and bipartite graphs, Information Pro-

cessing Letters 19 (1984), 37–40. 148

[BFH94] Hans L. Bodlaender, Michael R. Fellows, and Michael T. Hallett, Beyond NP-

completeness for problems of bounded width: Hardness for the W hierarchy, Pro-

ceedings of the 26th Annual ACM Symposium on the Theory of Computing

(STOC 1994), ACM, 1994, pp. 449–458. 26

[BH08] Andreas Björklund and Thore Husfeldt, Exact algorithms for exact satisfiability

and number of perfect matchings, Algorithmica 52 (2008), no. 2, 226–249. 20

[BHK09] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto, Set partitioning via

inclusion–exclusion, SIAM Journal on Computing 39 (2009), no. 2, 546–563. 24,

25, 52, 154

BIBLIOGRAPHY 189

[BHKK07] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto, Fourier

meets Möbius: fast subset convolution, Proceedings of the 39th Annual ACM

Symposium on Theory of Computing (STOC 2007), ACM, 2007, pp. 67–74. 25

[BHKK08a] , Computing the tutte polynomial in vertex-exponential time, Proceedings

of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS

2008), IEEE, 2008, pp. 677–686. 25

[BHKK08b] , The travelling salesman problem in bounded degree graphs, Proceedings

of the 35th International Colloquium on Automata, Languages and Programming

(ICALP 2008), Lecture Notes in Computer Science, vol. 5125, Springer, Berlin,

2008, pp. 198–209. 21, 25

[BHKK08c] , Trimmed moebius inversion and graphs of bounded degree, Proceedings of

the 25th Annual Symposium on Theoretical Aspects of Computer Science (STACS

2008), Dagstuhl Seminar Proceedings, vol. 08001, Internationales Begegnungs-

und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008,

pp. 85–96. 25

[BJ82] Kellogg S. Booth and J. Howard Johnson, Dominating sets in chordal graphs,

SIAM Journal of Computing 11 (1982), no. 1, 191–199. 144

[Bjö07] Andreas Björklund, Algorithmic bounds for presumably hard combinatorial prob-

lems, Ph.D. thesis, Lund University, Sweden, 2007. 18

[BK04] Tobias Brueggemann and Walter Kern, An improved deterministic local search

algorithm for 3-SAT, Theoretical Computer Science 329 (2004), no. 1-3, 303–313.

23

[BMS05] Jesper M. Byskov, Bolette A. Madsen, and Bjarke Skjernaa, On the number of

maximal bipartite subgraphs of a graph, Journal of Graph Theory 48 (2005), no. 2,

127–132. 20, 62

[BMT00] Lorenzo Brunetta, Francesco Maffioli, and Marco Trubian, Solving the feed-

back vertex set problem on undirected graphs, Discrete Applied Mathematics 101

(2000), no. 1-3, 37–51. 51

[Bod98] Hans L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, The-

oretical Computer Science 209 (1998), no. 1-2, 1–45. 131

[Bod07] Hans L. Bodlaender, A cubic kernel for feedback vertex set, Proceedings of the 24th

Annual Symposium on Theoretical Aspects of Computer Science (STACS 2007),

Lecture Notes in Computer Science, vol. 4393, Springer, Berlin, 2007, pp. 320–331.

51

190 BIBLIOGRAPHY

[BR99] Nikhil Bansal and Venkatesh Raman, Upper bounds for MaxSat: Further improved,

Proceedings of the 10th International Symposium on Algorithms and Computation

(ISAAC 1999), Lecture Notes in Computer Science, vol. 1741, Springer, Berlin,

1999, pp. 247–258. 86

[BT97] Hans L. Bodlaender and Dimitrios M. Thilikos, Treewidth for graphs with small

chordality, Discrete Applied Mathematics 79 (1997), 45–61. 142, 145

[BT01] Vincent Bouchitté and Ioan Todinca, Treewidth and minimum fill-in: grouping

the minimal separators, SIAM Journal on Computing 31 (2001), 212–232. 151

[BYGNR98] Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth, Approximation

algorithms for the feedback vertex set problem with applications to constraint sat-

isfaction and Bayesian inference, SIAM Journal on Computing 27 (1998), no. 4,

942–959. 51

[Bys04a] Jesper M. Byskov, Enumerating maximal independent sets with applications to

graph colouring, Operations Research Letters 32 (2004), no. 6, 547–556. 20, 52,

154, 160

[Bys04b] , Exact algorithms for graph colouring and exact satisfiability, Ph.D. thesis,

Aarhus University, Denmark, 2004. 18, 20, 63

[CB94] Ramon Carbó and Emili Besalú, Definition, mathematical examples and quantum

chemical applications of nested summation symbols and logical kronecker deltas,

Computers & Chemistry 18 (1994), no. 2, 117–126. 38

[CDZ02] Mao-Cheng Cai, Xiaotie Deng, and Wenan Zang, A min-max theorem on feedback

vertex sets, Mathematics of Operations Research 27 (2002), no. 2, 361–371. 51

[CFL+08] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger, Im-

proved algorithms for feedback vertex set problems, Journal of Computer and Sys-

tem Sciences 74 (2008), no. 7, 1188–1198. 51, 163

[CGHW98] Fabián A. Chudak, Michel X. Goemans, Dorit S. Hochbaum, and David P.

Williamson, A primal-dual interpretation of two 2-approximation algorithms for

the feedback vertex set problem in undirected graphs, Operations Research Letters

22 (1998), no. 4-5, 111–118. 51

[Chr71] Nicos Christofides, An algorithm for the chromatic number of a graph, The Com-

puter Journal 14 (1971), 38–39. 154

[CKJ01] Jianer Chen, Iyad A. Kanj, and Weijia Jia, Vertex cover: further observations and

further improvements, Journal of Algorithms 41 (2001), no. 2, 280–301. 47

[CKX05] Jianer Chen, Iyad A. Kanj, and Ge Xia, Labeled search trees and amortized analy-

sis: improved upper bounds for NP-hard problems, Algorithmica 43 (2005), no. 4,

245–273. 47

BIBLIOGRAPHY 191

[CKX06] , Improved parameterized upper bounds for vertex cover, Proceedings of

the 31st International Symposium on Mathematical Foundations of Computer

Science (MFCS 2006), Lecture Notes in Computer Science, vol. 4162, Springer,

Berlin, 2006, pp. 238–249. 25, 172

[CLL+08] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon, A fixed-

parameter algorithm for the directed feedback vertex set problem, Proceedings of

the 40th Annual ACM Symposium on Theory of Computing (STOC 2008), ACM,

2008, pp. 177–186. 51, 163

[Coo71] Stephen A. Cook, The complexity of theorem proving procedures, Proceedings of

the 3rd Annual ACM Symposium on Thoery of Computing (STOC 1971), ACM,

1971, pp. 151–158. 15

[CP08] Marek Cygan and Marcin Pilipczuk, Faster exact bandwidth, Proceedings of the

34th International Workshop on Graph-Theoretic Concepts in Computer Science

(WG 2008), LNCS, vol. 5344, Springer, 2008, pp. 101–109. 22, 27

[CP09a] , Even faster exact bandwidth, Tech. Report 0902.1661v1 [cs.CC], arXiv,

2009. 22

[CP09b] , Exact and approximate bandwidth, Proceedings of the 36th International

Colloquium on Automata, Languages and Programming (ICALP 2009), LNCS,

vol. 5555, Springer, 2009, pp. 304–315. 26

[DdFS05] Vânia M. F. Dias, Celina M. H. de Figueiredo, and Jayme L. Szwarcfiter, Gen-

erating bicliques of a graph in lexicographic order, Theoretical Computer Science

337 (2005), 240–248. 66

[DdFS07] , On the generation of bicliques of a graph, Discrete Applied Mathematics

155 (2007), 1826–1832. 66

[DF92] Rodney G. Downey and Michael R. Fellows, Fixed-parameter intractability, Pro-

ceedings of the Seventh Annual IEEE Structure in Complexity Theory Conference

(SCT 1992), IEEE, 1992, pp. 36–49. 26

[DF99] , Parameterized complexity, Springer-Verlag, New York, 1999. 25, 51

[DFL+05] Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosa-

mond, and Kim Stevens, An O(2O(k)n3) FPT algorithm for the undirected feedback

vertex set problem, Proceedings of the 11th Annual International Conference on

Computing and Combinatorics (COCOON 2005), Lecture Notes in Computer Sci-

ence, vol. 3595, Springer, Berlin, 2005, pp. 859–869. 51

[DFL+07] , An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set prob-

lem, Theory of Computing Systems 41 (2007), no. 3, 479–492. 51, 163

192 BIBLIOGRAPHY

[DGH+02] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon Kleinberg,

Christos Papadimitriou, Prabhakar Raghavan, and Uwe Schöning, A deterministic

(2− 2/(k+ 1))n algorithm for k-SAT based on local search, Theoretical Computer

Science 289 (2002), no. 1, 69–83. 23

[DGMS07] Erik D. Demaine, Gregory Gutin, Dániel Marx, and Ulrike Stege, Open prob-

lems, Structure Theory and FPT Algorithmcs for Graphs, Digraphs and Hyper-

graphs, Dagstuhl Seminar Proceedings, vol. 07281, Internationales Begegnungs-

und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

83

[DHIV01] Evgeny Dantsin, Edward A. Hirsch, Sergei Ivanov, and Maxim Vsemirnov, Algo-

rithms for SAT and upper bounds on their complexity, Electronic Colloquium on

Computational Complexity (ECCC) 8 (2001), no. 12. 18

[DHW06] Evgeny Dantsin, Edward A. Hirsch, and Alexander Wolpert, Clause shortening

combined with pruning yields a new upper bound for deterministic SAT algorithms,

Proceedings of the 6th Italian Conference on Algorithms and Complexity (CIAC

2006), Lecture Notes in Computer Science, vol. 3998, Springer, Berlin, 2006,

pp. 60–68. 19

[DJ02] Vilhelm Dahllöf and Peter Jonsson, An algorithm for counting maximum weighted

independent sets and its applications, Proceedings of the 13th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2002), ACM and SIAM, 2002, pp. 292–

298. 69

[DJW05] Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström, Counting models for

2SAT and 3SAT formulae, Theoretical Computer Science 332 (2005), no. 1-3,

265–291. 45, 69

[DKST01] Milind Dawande, Pinar Keskinocakc, Jayashankar M. Swaminathand, and Sridhar

Tayur, On bipartite and multipartite clique problems, Journal of Algorithms 41

(2001), 388–403. 66

[DLL+06] Frank K. H. A. Dehne, Michael A. Langston, Xuemei Luo, Sylvain Pitre, Peter

Shaw, and Yun Zhang, The cluster editing problem: Implementations and ex-

periments, Proceedings of the Second International Workshop on Parameterized

and Exact Computation (IWPEC 2006), Lecture Notes in Computer Science, vol.

4169, Springer, Berlin, 2006, pp. 13–24. 172

[Dor06] Frederic Dorn, Dynamic programming and fast matrix multiplication, Proceedings

of the 14th Annual European Symposium on Algorithms (ESA 2006), Lecture

Notes in Computer Science, vol. 4168, Springer, Berlin, 2006, pp. 280–291. 144

[Dor07] , Designing subexponential algorithms: Problems, techniques & structures,

Ph.D. thesis, University of Bergen, Norway, 2007. 18

BIBLIOGRAPHY 193

[DP02] Limor Drori and David Peleg, Faster exact solutions for some NP-hard problems,

Theoretical Computer Science 287 (2002), no. 2, 473–499. 22

[Edm65] Jack Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17

(1965), 449–467. 15

[EK72] Jack Edmonds and Richard M. Karp, Theoretical improvements in algorithmic

efficiency for network flow problems, Journal of the ACM 19 (1972), no. 2, 248–

264. 174

[ENSZ00] Guy Even, Joseph Naor, Baruch Schieber, and Leonid Zosin, Approximating min-

imum subset feedback sets in undirected graphs with applications, SIAM Journal

on Discrete Mathematics 13 (2000), no. 2, 255–267. 51

[Epp03] David Eppstein, Small maximal independent sets and faster exact graph coloring,

Journal of Graph Algorithms and Applications 7 (2003), no. 2, 131–140. 20, 154

[Epp06] , Quasiconvex analysis of multivariate recurrence equations for backtracking

algorithms, ACM Transactions on Algorithms 2 (2006), no. 4, 492–509. 36, 38,

40, 112

[Fei00] Uriel Feige, Coping with the NP-hardness of the graph bandwidth problem, Pro-

ceedings of the 7th Scandinavian Workshop on Algorithm Theory (SWAT 2000),

Lecture Notes in Computer Science, vol. 1851, Springer, Berlin, 2000, pp. 10–19.

22

[Fer06] Henning Fernau, Parameterized algorithms for hitting set: The weighted case,

Proceedings of the 6th Italian Conference on Algorithms and Complexity (CIAC

2006), Lecture Notes in Computer Science, vol. 3998, Springer, Berlin, 2006,

pp. 332–343. 164, 172

[FG06] Jörg Flum and Martin Grohe, Parameterized complexity theory, Texts in Theoret-

ical Computer Science. An EATCS Series, Springer, Berlin, 2006. 25

[FGK03] Robert Fourer, David M. Gay, and Brian W. Kernighan, AMPL: A modeling

language for mathematical programming, second ed., Duxbury Press/Brooks/Cole

Publishing Co., 2003. 42

[FGK05] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch, Some new techniques in

design and analysis of exact (exponential) algorithms, Bulletin of the EATCS 87

(2005), 47–77. 18, 21, 24, 40, 130

[FGK+07] Fedor V. Fomin, Petr A. Golovach, Jan Kratochv́ıl, Dieter Kratsch, and Mathieu

Liedloff, Branch and recharge: Exact algorithms for generalized domination, Pro-

ceedings of the 10th International Workshop on Algorithms and Data Structures

(WADS 2007), Lecture Notes in Computer Science, vol. 4619, Springer, Berlin,

2007, pp. 507–518. 22

194 BIBLIOGRAPHY

[FGK+08] Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket

Saurabh, Iterative compression and exact algorithms, Proceedings of the 33rd

International Symposium on Mathematical Foundations of Computer Science

(MFCS 2008), Lecture Notes in Computer Science, vol. 5162, Springer, Berlin,

2008, pp. 335–346. 3, 63

[FGK+09a] Henning Fernau, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Daniel

Raible, Exact exponential-time algorithms for finding bicliques in a graph, Pro-

ceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Op-

timization (CTW 2009), Ecole Polytechnique and CNAM, 2009, pp. 205–209. 66

[FGK09b] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch, A measure & conquer

approach for the analysis of exact algorithms, Journal of the ACM 56 (2009),

no. 5, 1–32. 26, 36, 40, 47, 52, 63, 143, 146, 164, 165

[FGK09c] Martin Fürer, Serge Gaspers, and Shiva P. Kasiviswanathan, An exponential time

2-approximation algorithm for bandwidth, Proceedings of the 4th International

Workshop on Parameterized and Exact Computation (IWPEC 2009), Lecture

Notes in Computer Science, vol. 5917, Springer, 2009, to appear. 177

[FGP06] Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin, Finding a minimum feed-

back vertex set in time O(1.7548n), Proceedings of the 2nd International Workshop

on Parameterized and Exact Computation (IWPEC 2006), Lecture Notes in Com-

puter Science, vol. 4169, Springer, Berlin, 2006, pp. 184–191. 3

[FGPR08] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon, On the

minimum feedback vertex set problem: Exact and enumeration algorithms, Algo-

rithmica 52 (2008), no. 2, 293–307. 3

[FGPS08] Fedor V. Fomin, Fabrizio Grandoni, Artem V. Pyatkin, and Alexey A. Stepanov,

Combinatorial bounds via measure and conquer: Bounding minimal dominating

sets and applications, ACM Transactions on Algorithms 5 (2008), no. 1, 1–17. 20

[FGR09] Henning Fernau, Serge Gaspers, and Daniel Raible, Exact and parameterized al-

gorithms for max internal spanning tree, Proceedings of the 35th International

Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009), Lec-

ture Notes in Computer Science, vol. 5911, Springer, Berlin, 2009, pp. 100–111.

49

[FGS06] Fedor V. Fomin, Serge Gaspers, and Saket Saurabh, Branching and treewidth based

exact algorithms, Proceedings of the 17th Annual International Symposium on

Algorithms and Computation (ISAAC 2006), Lecture Notes in Computer Science,

vol. 4288, Springer, Berlin, 2006, pp. 16–25. 3

BIBLIOGRAPHY 195

[FGS07] , Improved exact algorithms for counting 3- and 4-colorings, Proceedings

of the 13th Annual International Computing and Combinatorics Conference (CO-

COON 2007), Lecture Notes in Computer Science, vol. 4598, Springer, Berlin,

2007, pp. 65–74. 3

[FGSS09] Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov, On two

techniques of combining branching and treewidth, Algorithmica 54 (2009), no. 2,

181–207. 3

[FH77] Stephan Földes and Peter L. Hammer, Split graphs, Proceedings of the 8th

Southeastern Conference on Combinatorics, Graph Theory and Computing, 1977,

pp. 311–315. 63

[FH06] Fedor V. Fomin and Kjartan Høie, Pathwidth of cubic graphs and exact algorithms,

Information Processing Letters 97 (2006), no. 5, 191–196. 130, 144, 152

[FK98] Uriel Feige and Joe Kilian, Zero knowledge and the chromatic number, Journal of

Computer and System Sciences 57 (1998), no. 2, 187–199. 153

[FK04] Sergey S. Fedin and Alexander S. Kulikov, Automated proofs of upper bounds

on the running time of splitting algorithms, Proceedings of the 1st International

Workshop on Parameterized and Exact Computation (IWPEC 2004), Lecture

Notes in Computer Science, vol. 3162, Springer, Belin, 2004, pp. 248–259. 178

[FK05] Martin Fürer and Shiva P. Kasiviswanathan, Algorithms for counting 2-SAT so-

lutions and colorings with applications, Tech. report, Electronic Colloquium on

Computational Complexity (ECCC), 2005. 45, 69, 154

[FKW04] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger, Exact (exponential)

algorithms for the dominating set problem, Proceedings of the 30th Workshop on

Graph Theoretic Concepts in Computer Science (WG 2004), Lecture Notes in

Computer Science, vol. 3353, Springer, Berlin, 2004, pp. 245–256. 143, 152

[FLRS07] Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw,

Efficient parameterized preprocessing for cluster editing, Proceedings of the 16th

International Symposium on Fundamentals of Computation Theory (FCT 2007),

Lecture Notes in Computer Science, vol. 4639, Springer, Berlin, 2007, pp. 312–321.

172

[FP05] Fedor V. Fomin and Artem V. Pyatkin, Finding minimum feedback vertex set in

bipartite graph, Reports in Informatics 291, University of Bergen, 2005. 52

[FPR99] Paola Festa, Panos M. Pardalos, and Mauricio G. C. Resende, Feedback set prob-

lems, Handbook of combinatorial optimization, Supplement Vol. A, Kluwer Aca-

demic Publishers, Dordrecht, 1999, pp. 209–258. 51

196 BIBLIOGRAPHY

[FR96] Meinrad Funke and Gerhard Reinelt, A polyhedral approach to the feedback vertex

set problem, Integer programming and combinatorial optimization, Lecture Notes

in Computer Science, vol. 1084, Springer, Berlin, 1996, pp. 445–459. 51

[Fuk96] Komei Fukuda, Complexity of enumeration - evaluating the hardness of listing

objects, presented at ETH Zurich, May 1996, also at International Symposium

on Mathematical Programming 1997, 1996, http://www.ifor.math.ethz.ch/

~fukuda/old/ENP_home/ENP_note.html. 16

[FV08] Fedor V. Fomin and Yngve Villanger, Treewidth computation and extremal com-

binatorics, Proceedings of the 35th International Colloquium on Automata, Lan-

guages and Programming (ICALP 2008), Lecture Notes in Computer Science, vol.

5125, Springer, Berlin, 2008, pp. 210–221. 20, 26

[FV10] , Finding induced subgraphs via minimal triangulations, Proceedings of

the 27th International Symposium on Theoretical Aspects of Computer Science

(STACS 2010), Leibniz International Proceedings in Informatics, Schloss Dagstuhl

- Leibniz Center of Informatics, 2010, to appear. 20, 52, 63

[Gas02] William I. Gasarch, Guest column: The P=?NP poll, SIGACT News 33 (2002),

no. 2, 34–47. 18

[Gas05] Serge Gaspers, Algorithmes exponentiels, Master’s thesis, University of Metz,

France, 2005, in French. 175

[Gas08] Serge Gaspers, Exponential time algorithms: Structures, measures, and bounds,

Ph.D. thesis, University of Bergen, Norway, 2008. 18

[Gas09] Serge Gaspers, Measure & conquer for parameterized branching algorithms, Pa-

rameterized Complexity News: Newsletter of the Parameterized Complexity Com-

munity, September 2009. 49, 175

[GGH+06] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wer-

nicke, Compression-based fixed-parameter algorithms for feedback vertex set and

edge bipartization, Journal of Computer and System Sciences 72 (2006), no. 8,

1386–1396. 51, 163

[GHNR03] Jens Gramm, Edward A. Hirsch, Rolf Niedermeier, and Peter Rossmanith, Worst-

case upper bounds for MAX-2-SAT with an application to MAX-CUT, Discrete

Applied Mathematics 130 (2003), no. 2, 139–155. 86

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability, a guide

to the theory of NP-completeness, W.H. Freeman and Company, New York, 1979.

16, 66, 153, 161

http://www.ifor.math.ethz.ch/~fukuda/old/ENP_home/ENP_note.html
http://www.ifor.math.ethz.ch/~fukuda/old/ENP_home/ENP_note.html

BIBLIOGRAPHY 197

[GKL06] Serge Gaspers, Dieter Kratsch, and Mathieu Liedloff, Exponential time algorithms

for the minimum dominating set problem on some graph classes, Proceedings of

the 10th Scandinavian Workshop on Algorithm Theory (SWAT 2006), Lecture

Notes in Computer Science, vol. 4059, Springer, Berlin, 2006, pp. 148–159. 3

[GKL08] , On independent sets and bicliques in graphs, Proceedings of the 34th In-

ternational Workshop on Graph-Theoretic Concepts in Computer Science (WG

2008), Lecture Notes in Computer Science, vol. 5344, Springer, Berlin, 2008,

pp. 171–182. 3, 35

[GKLT09] Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Ioan Todinca, Exponential

time algorithms for the minimum dominating set problem on some graph classes,

ACM Transactions on Algorithms 6 (2009), no. 1:9, 1–21. 3, 142, 151

[GL06] Serge Gaspers and Mathieu Liedloff, A branch-and-reduce algorithm for finding a

minimum independent dominating set in graphs, Proceedings of the 32nd Interna-

tional Workshop on Graph-Theoretic Concepts in Computer Science (WG 2006),

Lecture Notes in Computer Science, vol. 4271, Springer, Berlin, 2006, pp. 78–89.

81, 152

[GM09] Serge Gaspers and Matthias Mnich, On feedback vertex sets in tournaments, Tech.

Report 0905.0567v1 [cs.DM], arXiv, 2009. 20

[Gol78] Martin C. Golumbic, Trivially perfect graphs, Discrete Mathematics 24 (1978),

105–107. 63

[Gol80] , Algorithmic graph theory and perfect graphs, Academic Press, New York,

1980. 150

[Gra04] Fabrizio Grandoni, Exact algorithms for hard graph problems, Ph.D. thesis, Uni-

versità di Roma “Tor Vergata”, Roma, Italy, 2004. 18, 21

[Gra06] , A note on the complexity of minimum dominating set, Journal of Discrete

Algorithms 4 (2006), no. 2, 209–214. 143

[GRS06] Sushmita Gupta, Venkatesh Raman, and Saket Saurabh, Fast exponential algo-

rithms for maximum r-regular induced subgraph problems, Proceedings of the 26th

Conference on Foundations of Software Technology and Theoretical Computer

Science (FSTTCS 2006), Lecture Notes in Computer Science, no. 4337, Springer,

Berlin, 2006, pp. 139–151. 20, 63

[GS87] Yuri Gurevich and Saharon Shelah, Expected computation time for Hamiltonian

path problem, SIAM Journal on Computing 16 (1987), no. 3, 486–502. 26

[GS09] Serge Gaspers and Gregory Sorkin, A universally fastest algorithm for Max 2-Sat,

Max 2-CSP, and everything in between, Proceedings of the 20th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2009), ACM and SIAM, 2009,

pp. 606–615. 3, 86

198 BIBLIOGRAPHY

[GSB95] Mark K. Goldberg, Thomas H. Spencer, and David A. Berque, A low-exponential

algorithm for counting vertex covers, Graph Theory, Combinatorics, Algorithms,

and Applications, vol. 1, Wiley, New York, 1995, pp. 431–444. 17, 45

[Guo09] Jiong Guo, A more effective linear kernelization for cluster editing, Theoretical

Computer Science 410 (2009), no. 8-10, 718–726. 172

[GW96] Bernhard Ganter and Rudolf Wille, Formal concept analysis, mathematical foun-

dations, Springer, Berlin, 1996. 66

[Hir00] Edward A. Hirsch, A new algorithm for MAX-2-SAT, Proceedings of the 17th

Annual Symposium on Theoretical Aspects of Computer Science (STACS 2000),

Lecture Notes in Computer Science, vol. 1770, Springer, Berlin, 2000, pp. 65–73.

86

[HK62] Michael Held and Richard M. Karp, A dynamic programming approach to sequenc-

ing problems, Journal of SIAM 10 (1962), 196–210. 17, 21

[HK73] John E. Hopcroft and Richard M. Karp, An n5/2 algorithm for maximum matching

in bipartite graphs, SIAM Journal on Computing 2 (1973), no. 4, 225–231. 165

[HKMN08] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier, Fixed-

parameter algorithms for cluster vertex deletion, Proceedings of the 8th Latin

American Theoretical Informatics Symposium (LATIN 2008), Lecture Notes in

Computer Science, vol. 4957, Springer, Berlin, 2008, pp. 711–722. 163, 172, 173

[Hoc98] Dorit S. Hochbaum, Approximating clique and biclique problems, Journal of Algo-

rithms 29 (1998), 174–200. 66

[HS74] Ellis Horowitz and Sartaj Sahni, Computing partitions with applications to the

knapsack problem, Journal of the ACM 21 (1974), no. 2, 277–292. 17, 22, 23

[HT93] Mihály Hujter and Zsolt Tuza, The number of maximal independent sets in

triangle-free graphs, SIAM Journal on Discrete Mathematics 6 (1993), 284–288.

67

[IP99] Russell Impagliazzo and Ramamohan Paturi, Complexity of k-SAT, Proceedings

of the 14th Annual IEEE Conference on Computational Complexity, IEEE, 1999,

pp. 237–240. 18

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane, Which problems have

strongly exponential complexity, Journal of Computer and System Sciences 63

(2001), no. 4, 512–530. 18

[Iwa04] Kazuo Iwama, Worst-case upper bounds for k-SAT, Bulletin of the EATCS 82

(2004), 61–71. 18

BIBLIOGRAPHY 199

[Jia86] Tang Jian, An O(20.304n) algorithm for solving maximum independent set problem,

IEEE Transactions on Computers 35 (1986), no. 9, 847–851. 17, 63, 165

[JRR03] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi, Preface, Combinatorial

Optimization - Eureka, you shrink!, Lecture Notes in Computer Science, vol. 2570,

Springer, Berlin, 2003. 15

[JS99] David S. Johnson and Mario Szegedy, What are the least tractable instances of max

independent set?, Proceedings of the 10th ACM-SIAM Symposium on Discrete

Algorithms (SODA 1999), ACM and SIAM, 1999, pp. 927–928. 18

[JYP88] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou, On gen-

erating all maximal independent sets, Information Processing Letters 27 (1988),

no. 3, 119–123. 20, 66, 162, 166

[Kar72] Richard M. Karp, Reducibility among combinatorial problems, Complexity of com-

puter computations, Plenum Press, New York, 1972, pp. 85–103. 16, 51

[Kar82] , Dynamic programming meets the principle of inclusion and exclusion,

Operations Research Letters 1 (1982), no. 2, 49–51. 17, 24

[Kei93] J. Mark Keil, The complexity of domination problems in circle graphs, Discrete

Applied Mathematics 42 (1993), no. 1, 51–63. 144

[KK01] Jon Kleinberg and Amit Kumar, Wavelength conversion in optical networks, Jour-

nal of Algorithms 38 (2001), no. 1, 25–50. 51

[KK06] Arist Kojevnikov and Alexander S. Kulikov, A new approach to proving upper

bounds for MAX-2-SAT, Proceedings of the 17th Annual ACM–SIAM Symposium

on Discrete Algorithms (SODA 2006), ACM and SIAM, New York, 2006, pp. 11–

17. 86, 88, 96, 101

[KK07] Alexander S. Kulikov and Konstantin Kutzkov, New bounds for MAX-SAT by

clause learning, Proceedings of the 2nd International Symposium on Computer

Science in Russia (CSR 2007), Lecture Notes in Computer Science, vol. 4649,

Springer, Berlin, 2007, pp. 194–204. 86, 88, 96, 103

[Klo94] Ton Kloks, Treewidth, computations and approximations, Lecture Notes in Com-

puter Science, vol. 842, Springer, 1994. 130

[Klo96] , Treewidth of circle graphs, International Journal of Foundations of Com-

puter Science 7 (1996), 111–120. 134, 135

[KLR09] Joachim Kneis, Alexander Langer, and Peter Rossmanith, A fine-grained analy-

sis of a simple independent set algorithm, Proceedings of the 29th International

Conference on Foundations of Software Technology and Theoretical Computer Sci-

ence (FSTTCS 2009), Leibniz International Proceedings in Informatics, Schloss

Dagstuhl - Leibniz Center of Informatics, 2009, to appear. 54

200 BIBLIOGRAPHY

[KMRR09] Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith, A bound on

the pathwidth of sparse graphs with applications to exact algorithms, SIAM Journal

on Discrete Mathematics 23 (2009), no. 1, 407–427. 86, 132

[Koi06] Mikko Koivisto, Optimal 2-constraint satisfaction via sum-product algorithms, In-

formation Processing Letters 98 (2006), no. 1, 24–28. 86

[KP06] Subhash Khot and Ashok K. Ponnuswami, Better inapproximability results for

MaxClique, Chromatic Number and Min-3Lin-Deletion, Proceedings of the 33rd

International Colloquium on Automata, Languages and Programming (ICALP

2006), Lecture Notes in Computer Science, vol. 4051, Springer, Berlin, 2006,

pp. 226–237. 153

[KPS08] Graham Kendall, Andrew Parkes, and Kristian Spoerer, A survey of NP-complete

puzzles, International Computer Games Association Journal 31 (2008), no. 1, 13–

34. 16

[KR05] Joachim Kneis and Peter Rossmanith, A new satisfiability algorithm with applica-

tions to Max-Cut, Tech. Report AIB-2005-08, Department of Computer Science,

RWTH Aachen, 2005. 86

[Kra07] Dieter Kratsch, In: Open problem session, presented at Dagstuhl Seminar 07211

on Exact, Approximative, Robust and Certifying Algorithms on Particular Graph

Classes, May 2007. 177

[KS93] Ephraim Korach and Nir Solel, Tree-width, path-width, and cutwidth, Discrete

Applied Mathematics 43 (1993), no. 1, 97–101. 131

[Kul99] Oliver Kullmann, New methods for 3-SAT decision and worst-case analysis, The-

oretical Computer Science 223 (1999), no. 1–2, 1–72. 17, 34, 36

[Kul05] Alexander S. Kulikov, Automated generation of simplification rules for SAT and

MAXSAT, Proceedings of the 8th International Conference on Theory and Appli-

cations of Satisfiability Testing (SAT 2005), Lecture Notes in Computer Science,

vol. 3569, Springer, Berlin, 2005, pp. 430–436. 178

[KVZ01] Andrew B. Kahng, Shailesh Vaya, and Alexander Zelikovsky, New graph bipartiza-

tions for double-exposure, bright field alternating phase-shift mask layout, Proceed-

ings of the 6th Asia and South Pacific Design Automation Conference (ASP-DAC

2001), ACM, New York, 2001, pp. 133–138. 51

[KW05] Bettina Klinz and Gerhard J. Woeginger, Faster algorithms for computing power

indices in weighted voting games, Mathematical Social Sciences 49 (2005), no. 1,

111–116. 22

[Law76] Eugene L. Lawler, A note on the complexity of the chromatic number problem,

Information Processing Letters 5 (1976), no. 3, 66–67. 17, 20, 21, 154, 160

BIBLIOGRAPHY 201

[Lev73] Leonid A. Levin, Universal search problems, Problemy Peredaci Informacii 9

(1973), 265–266, In Russian; English translation in: Boris A. Trakhtenbrot, A

survey of russian approaches to perebor (brute-force search) algorithms, Annals of

the History of Computing 6 (1984), no. 4, 384–400. 16

[Lie07] Mathieu Liedloff, Algorithmes exacts et exponentiels pour les problèmes NP-

difficiles : domination, variantes et généralisations, Ph.D. thesis, University of

Metz, France, 2007, in French. 18

[Lie08] , Finding a dominating set on bipartite graphs, Information Processing

Letters 107 (2008), 154–157. 22, 144, 152

[LS09] Daniel Lokshtanov and Saket Saurabh, Even faster algorithm for set splitting!,

Proceedings of the 4th International Workshop on Parameterized and Exact Com-

putation (IWPEC 2009), Lecture Notes in Computer Science, vol. 5917, Springer,

Berlin, 2009, pp. 288–299. 49

[MM65] John W. Moon and Leo Moser, On cliques in graphs, Israel Journal of Mathematics

3 (1965), 23–28. 20, 35, 54

[Moo71] John W. Moon, On maximal transitive subtournaments, Proceedings of the Edin-

burgh Mathematical Society 17 (1971), no. 4, 345–349. 20

[MP06] Burkhard Monien and Robert Preis, Upper bounds on the bisection width of 3- and

4-regular graphs, Journal of Discrete Algorithms 4 (2006), no. 3, 475–498. 130

[MS85] Burkhard Monien and Ewald Speckenmeyer, Solving satisfiability in less than 2n

steps, Discrete Applied Mathematics 10 (1985), no. 3, 287–295. 17

[MU04] Kazuhisa Makino and Takeaki Uno, New algorithms for enumerating all maxi-

mal cliques, Proceedings of the 9th Scandinavian Workshop on Algorithm Theory

(SWAT 2004), Lecture Notes in Computer Science, vol. 3111, Springer, Berlin,

2004, pp. 260–272. 66

[Ned09] Jesper Nederlof, Fast polynomial-space algorithms using möbius inversion: Im-

proving on steiner tree and related problems, Proceedings of the 36th International

Colloquium on Automata, Languages and Programming (ICALP 2009), Lecture

Notes in Computer Science, vol. 5555, Springer, Berlin, 2009, pp. 713–725. 25

[Nie06] Rolf Niedermeier, Invitation to fixed-parameter algorithms, Oxford Lecture Series

in Mathematics and its Applications, vol. 31, Oxford University Press, Oxford,

2006. 25

[NR99] Lhouari Nourine and Olivier Raynaud, A fast algorithm for building lattices, In-

formation Processing Letters 71 (1999), 199–204. 66

202 BIBLIOGRAPHY

[NR00] Rolf Niedermeier and Peter Rossmanith, New upper bounds for maximum satisfi-

ability, Journal of Algorithms 36 (2000), no. 1, 63–88. 86

[NR02] Lhouari Nourine and Olivier Raynaud, A fast incremental algorithm for building

lattices, Journal of Experimental and Theoretical Artificial Intelligence 14 (2002),

217–227. 66

[OUU08] Yoshio Okamoto, Takeaki Uno, and Ryuhei Uehara, Counting the number of in-

dependent sets in chordal graphs, Journal of Discrete Algorithms 6 (2008), no. 2,

229–242. 68

[Pee03] René Peeters, The maximum edge biclique problem is NP-complete, Discrete Ap-

plied Mathematics 131 (2003), 651–654. 66

[PI00] Pavel Pudlák and Russel Impaglazzio, A lower bound for DLL algorithms for k-

SAT, Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms

(SODA 2000), ACM and SIAM, 2000, pp. 128–136. 18

[PKS04] Mihai Pop, Daniel S. Kosack, and Steven L. Salzberg, Hierarchical scaffolding with

bambus, Genome Research 14 (2004), 149–159. 51

[PQR99] Panos M. Pardalos, Tianbing Qian, and Mauricio G. C. Resende, A greedy ran-

domized adaptive search procedure for the feedback vertex set problem, Journal of

Combinatorial Optimization 2 (1999), no. 4, 399–412. 51

[Pri00] Erich Prisner, Bicliques in graphs I: Bounds on their number, Combinatorica 20

(2000), 109–117. 66, 67, 68

[RF08] Daniel Raible and Henning Fernau, A new upper bound for Max-2-SAT: A graph-

theoretic approach, Proceedings of the 33rd International Symposium on Mathe-

matical Foundations of Computer Science 2008 (MFCS 2008), Lecture Notes in

Computer Science, vol. 5162, Springer, Berlin, 2008, pp. 551–562. 86

[Rie06] Tobias Riege, The domatic number problem: Boolean hierarchy completeness

and exact exponential-time algorithms, Ph.D. thesis, Heinrich-Heine University

Düsseldorf, Germany, 2006. 18

[Rob86] John M. Robson, Algorithms for maximum independent sets, Journal of Algo-

rithms 7 (1986), no. 3, 425–440. 17, 21, 26, 45, 52, 63, 68, 164, 165, 171

[Rob01] , Finding a maximum independent set in time O(2n/4), manuscript, http:

//www.labri.fr/perso/robson/mis/techrep.ps, 2001. 178

[RS83] Neil Robertson and Paul D. Seymour, Graph minors. I. Excluding a forest, Journal

of Combinatorial Theory, Series B 35 (1983), 39–61. 130

[RS86] , Graph minors. II. Algorithmic aspects of tree-width, Journal of Algorithms

7 (1986), no. 3, 309–322. 130

http://www.labri.fr/perso/robson/mis/techrep.ps
http://www.labri.fr/perso/robson/mis/techrep.ps

BIBLIOGRAPHY 203

[RS04] Bert Randerath and Ingo Schiermeyer, Exact algorithms for MINIMUM DOMI-

NATING SET, Technical Report zaik-469, Zentrum für Angewandte Informatik

Köln, Germany, 2004. 143, 154

[RSS05] Venkatesh Raman, Saket Saurabh, and Somnath Sikdar, Improved exact exponen-

tial algorithms for vertex bipartization and other problems, Proceedings of the 9th

Italian Conference on Theoretical Computer Science (ICTCS 2005), Lecture Notes

in Computer Science, vol. 3701, Springer, Berlin, 2005, pp. 375–389. 26, 52, 164

[RSS06] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian, Faster fixed param-

eter tractable algorithms for finding feedback vertex sets, ACM Transactions on

Algorithms 2 (2006), no. 3, 403–415. 51

[RSS07] Venkatesh Raman, Saket Saurabh, and Somnath Sikdar, Efficient exact algorithms

through enumerating maximal independent sets and other techniques, Theory of

Computing Systems 41 (2007), no. 3, 563–587. 20, 63, 154, 161, 164

[RSV04] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta, Finding odd cycle transversals,

Operations Research Letters 32 (2004), no. 4, 299–301. 163

[RWB+07] Sven Rahmann, Tobias Wittkop, Jan Baumbach, Marcel Martin, Anke Truss,

and Sebastian Böcker, Exact and heuristic algorithms for weighted cluster editing,

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference

6 (2007), no. 1, 391–401. 172

[Sax80] James B. Saxe, Dynamic-programming algorithms for recognizing small-bandwidth

graphs in polynomial time, SIAM Journal on Algebraic and Discrete Methods 1

(1980), no. 4, 363–369. 26

[Sch95] Ingo Schiermeyer, Problems remaining NP-complete for sparse or dense graphs,

Discussiones Mathematicae. Graph Theory 15 (1995), 33–41. 148

[Sch01] Uwe Schöning, New algorithms for k-SAT based on the local search principle, Pro-

ceedings of the 26th International Symposium on Mathematical Foundations of

Computer Science (MFCS 2001), Lecture Notes in Computer Science, vol. 2136,

Springer, Berlin, 2001, pp. 87–95. 23

[Sch05] , Algorithmics in exponential time, Proceedings of the 22nd International

Symposium on Theoretical Aspects of Computer Science (STACS 2005), Lecture

Notes in Computer Science, vol. 3404, Springer, Berlin, 2005, pp. 36–43. 18

[Sch08] Dominik Scheder, Guided search and a faster deterministic algorithm for 3-SAT,

Proceedings of the 8th Latin American Symposium on Theoretical Informatics

(LATIN 2008), Lecture Notes in Computer Science, vol. 4957, Springer, Berlin,

2008, pp. 60–71. 23

204 BIBLIOGRAPHY

[SS81] Richard Schroeppel and Adi Shamir, A T = O(2n/2), S = O(2n/4) algorithm for

certain NP-complete problems, SIAM Journal on Computing 10 (1981), no. 3,

456–464. 17, 22, 23

[SS02] Benno Schwikowski and Ewald Speckenmeyer, On enumerating all minimal so-

lutions of feedback problems, Discrete Applied Mathematics 117 (2002), no. 1-3,

253–265. 52, 58

[SS03] Alexander D. Scott and Gregory B. Sorkin, Faster algorithms for MAX CUT and

MAX CSP, with polynomial expected time for sparse instances, Proceedings of the

7th International Workshop on Randomization and Approximation Techniques in

Computer Science (RANDOM 2003), Lecture Notes in Computer Science, vol.

2764, Springer, Berlin, 2003, pp. 382–395. 86

[SS04] , A faster exponential-time algorithm for Max 2-Sat, Max Cut, and Max k-

Cut, Tech. Report RC23456 (W0412-001), IBM Research Report, December 2004.

86

[SS07] , Linear-programming design and analysis of fast algorithms for Max 2-

CSP, Discrete Optimization 4 (2007), no. 3–4, 260–287. 36, 86, 88, 96, 99, 100,

127, 132

[SS09] , Polynomial constraint satisfaction problems, graph bisection, and the

Ising partition function, ACM Transactions on Algorithms 5 (2009), no. 4, 1–27.

100

[ST90] Miklo Shindo and Etsuji Tomita, A simple algorithm for finding a maximum clique

and its worst-case time complexity, Systems and Computers in Japan 21 (1990),

no. 3, 1–13. 17, 165

[Ste08] Alexey A. Stepanov, Exact algorithms for hard listing, counting and decision prob-

lems, Ph.D. thesis, University of Bergen, Norway, 2008. 18

[Tho09] Stéphan Thomassé, A quadratic kernel for feedback vertex set, Proceedings of

the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009),

SIAM, 2009, pp. 115–119. 51

[Tra84] Boris A. Trakhtenbrot, A survey of russian approaches to perebor (brute-force

search) algorithms, Annals of the History of Computing, vol. 6, IEEE, 1984,

pp. 384–400. 15

[Tra08] Patrick Traxler, The time complexity of constraint satisfaction, Proceedings of

the 3rd International Workshop on Parameterized and Exact Computation (IW-

PEC 2008), Lecture Notes in Computer Science, vol. 5018, Springer, Berlin, 2008,

pp. 190–201. 18

BIBLIOGRAPHY 205

[TT77] Robert E. Tarjan and Anthony E. Trojanowski, Finding a maximum independent

set, SIAM Journal on Computing 6 (1977), no. 3, 537–546. 17, 63, 165

[Ung98] Walter Unger, The complexity of the approximation of the bandwidth problem,

Proceedings of the 39th Annual Symposium on Foundations of Computer Science

(FOCS 1998), IEEE, 1998, pp. 82–91. 26

[Val79] Leslie G. Valiant, The complexity of computing the permanent, Theoretical Com-

puter Science 8 (1979), no. 2, 189–201. 16

[vRB08a] Johan M. M. van Rooij and Hans L. Bodlaender, Design by measure and con-

quer, a faster exact algorithm for dominating set, Proceedings of the 25th Annual

Symposium on Theoretical Aspects of Computer Science (STACS 2008), Dagstuhl

Seminar Proceedings, vol. 08001, Internationales Begegnungs- und Forschungszen-

trum fuer Informatik (IBFI), 2008, pp. 657–668. 144, 145

[vRB08b] , Exact algorithms for edge domination, Proceedings of the 3rd Interna-

tional Workshop on Parameterized and Exact Computation (IWPEC 2008), Lec-

ture Notes in Computer Science, vol. 5018, Springer, Berlin, 2008, pp. 214–225.

155

[vRBR09] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith, Dynamic pro-

gramming on tree decompositions using generalised fast subset convolution, Pro-

ceedings of the 17th Annual European Symposium on Algorithms (ESA 2009),

Lecture Notes in Computer Science, vol. 5757, Springer, Berlin, 2009, pp. 566–

577. 146

[vRNvD09] Johan M. M. van Rooij, Jesper Nederlof, and Thomas C. van Dijk, Inclu-

sion/exclusion meets measure and conquer: Exact algorithms for counting domi-

nating sets, Proceedings of the 17th Annual European Symposium on Algorithms

(ESA 2009), LNCS, vol. 5757, Springer, 2009, pp. 554–565. 25, 144, 146, 152

[VWW06] Virginia Vassilevska, Ryan Williams, and Shan Leung Maverick Woo, Confronting

hardness using a hybrid approach, Proceedings of the 17th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2006), ACM, 2006, pp. 1–10. 16

[Wah04] Magnus Wahlström, Exact algorithms for finding minimum transversals in rank-3

hypergraphs, Journal of Algorithms 51 (2004), no. 2, 107–121. 26, 47, 63, 88

[Wah07] , Algorithms, measures and upper bounds for satisfiability and related prob-

lems, Ph.D. thesis, Linköping University, Sweden, 2007. 18, 26, 63, 164, 169, 170,

171, 172

[Wah08] , A tighter bound for counting max-weight solutions to 2SAT instances,

Proceedings of the 3rd International Workshop on Parameterized and Exact Com-

putation (IWPEC 2008), Lecture Notes in Computer Science, vol. 5018, Springer,

Berlin, 2008, pp. 202–213. 45, 68, 69

206 BIBLIOGRAPHY

[Wil05] Ryan Williams, A new algorithm for optimal 2-constraint satisfaction and its im-

plications, Theoretical Computer Science 348 (2005), no. 2-3, 357–365. 23, 86

[Wil07] , Algorithms and resource requirements for fundamental problems, Ph.D.

thesis, Carnegie Mellon University, USA, 2007. 18

[Woe03] Gerhard J. Woeginger, Exact algorithms for NP-hard problems: A survey, Combi-

natorial Optimization - Eureka, you shrink!, Lecture Notes in Computer Science,

vol. 2570, Springer, Berlin, 2003, pp. 185–207. 17, 18, 22

[Woe04] , Space and time complexity of exact algorithms: Some open problems,

Proceedings of the 1st International Workshop on Parameterized and Exact Com-

putation (IWPEC 2004), Lecture Notes in Computer Science, vol. 3162, Springer,

Berlin, 2004, pp. 281–290. 18, 26

[Woe08] , Open problems around exact algorithms, Discrete Applied Mathematics

156 (2008), 397–405. 18

[Yan78] Mihalis Yannakakis, Node and edge deletion NP-complete problems, Proceedings

of the 10th Annual ACM Symposium on Theory of Computing (STOC 1978),

ACM, 1978, pp. 253–264. 66, 67

[Zha96] Wenhui Zhang, Number of models and satisfiability of sets of clauses, Theoretical

Computer Science 155 (1996), no. 1, 277–288. 17

[Zuc07] David Zuckerman, Linear degree extractors and the inapproximability of max clique

and chromatic number, Theory of Computing 3 (2007), no. 1, 103–128. 19

Index

algorithm

#3-Coloring, 159

4-Coloring, 161

enumISPw, 156

max2csp, 90

#MaximalIS, 70

Maximum Independent Set, 166

Maximum Induced Cluster Subgraph,

175

mif, 55

Minimum Dominating Set, 147

#Minimum d-Hitting Set, 169, 170

Minimum Maximal Matching, 162

mis, 32

mis2, 48

analysis

measure based, 36

simple, 33

bag, 129

biclique

counting algorithm, 67

optimization algorithm, 67

property A, 67

property B, 67

bipartite, 20

bounds on mathematical objects, 20

branching, 32

branching algorithm, 31

branching number, 43

balance property, 44

dominance property, 43

brute force, 19

chordality, 151

chromatic number, 153

clause learning, 103

clique tree, 150

combination, 31

dynamic programming, 20

exhaustive search, see brute force

feedback vertex set, 20, 51

graph

C5 � P2, 62

Gl, 81

P 2
n , 36

graph class

4-chordal, 151

c-dense, 148

chordal, 63, 150

circle, 134, 151

cluster, 63, 172

cograph, 63

d-regular, 63

k-colorable, 63

line, 63

outerplanar, 63

path, 63

planar, 63

split, 63

trivially perfect, 63

weakly chordal, 151

inclusion–exclusion, 24

inspection, 31

208 INDEX

iterative compression, 163

local search, 23

logical kronecker delta, 38

lower bound

running time, 35

#MaximalIS, 81

mis, 36

matching, 161

mathematical programming

convex, 40

quasiconvex, 40

maximal biclique

counting algorithm, 83

number of, 68

measure, 38

optimize, 40

state based, 47

memorization, 21

minimal feedback vertex sets

number of, 58

lower bound, 62

upper bound, 58

nice tree decomposition, 129

O∗(·), 17

parameter bounded subroutines, 25

parameterized complexity, 25

partitioning based algorithms, 24

path decomposition, 129

pathwidth, 129

bound for sparse graphs, 130, 132, 133

preprocessing, 22

random local search, 40

rare structures, 45

recursion, 31

recursion tree, see search tree

reduction, 32

scanline, 135

search tree, 42

selection, 31

simplification, 32

split and list, 23

splitting, 32

subroutine, 44

super 2-reduction, 102

T·(·), 33

transformation, 32

tree decomposition, 129

treewidth, 129

bound for circle graphs, 136

	Preface
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Negative Results
	1.2 Overview of Techniques
	1.3 On Space and on Time
	1.4 Outline of the Book

	2 Branching Algorithms
	2.1 Simple Analysis
	2.2 Lower Bounds on the Running Time of an Algorithm
	2.3 Measure Based Analysis
	2.4 Optimizing the Measure
	2.5 Search Trees
	2.6 Branching Numbers and their Properties
	2.7 Exponential Time Subroutines
	2.8 Towards a Tighter Analysis
	2.9 Conclusion

	3 Feedback Vertex Sets
	3.1 Motivation and Related Work
	3.2 Discussion of Results
	3.3 Preliminaries
	3.4 Computing a Minimum Feedback Vertex Set
	3.5 On the Number of Minimal Feedback Vertex Sets
	3.6 Conclusion

	4 On Bicliques in Graphs
	4.1 Introduction
	4.2 Polynomial Time Reductions
	4.3 Combinatorial Bound for the Number of Maximal Bicliques
	4.4 Counting Algorithms
	4.5 Conclusion

	5 Max 2-Sat, Max 2-CSP, and everything in between
	5.1 Introduction
	5.2 Definitions
	5.3 Algorithm and Outline of Analysis
	5.4 Some Initial Constraints
	5.5 Simplification Rules and their Weight Constraints
	5.6 Some Useful Tools
	5.7 Branching Reductions and Preference Order
	5.8 Cubic Instances
	5.9 Instances of Degree 4
	5.10 Instances of Degree 5
	5.11 Instances of Degree 6
	5.12 Mathematical Program in AMPL
	5.13 Tuning the Bounds
	5.14 Conclusion

	6 Treewidth Bounds
	6.1 Bounds on the Pathwidth of Sparse Graphs
	6.2 Bound on the Treewidth of Circle Graphs
	6.3 Conclusion

	7 Domination on Graph Classes
	7.1 Related Work
	7.2 Results
	7.3 General Framework
	7.4 Dense Graphs
	7.5 Other Graph Classes
	7.6 Conclusion

	8 Enumeration and Pathwidth
	8.1 Considered Problems
	8.2 Our Results
	8.3 Framework Combining Enumeration and Pathwidth
	8.4 Applications
	8.5 Conclusion

	9 Iterative Compression and Exact Algorithms
	9.1 Background
	9.2 Maximum Independent Set
	9.3 #d-Hitting Set
	9.4 Maximum Induced Cluster Subgraph
	9.5 Conclusion

	10 Conclusion
	Glossary
	Problem Definitions
	Bibliography
	Index

