Glossary UNSW COMP6741

Serge Gaspers

Glossary

acyclic: A graph is acyclic if it has no cycle as a subgraph.

- **bipartite:** A graph G = (V, E) is bipartite if its vertex set can be partitioned into two independent sets. A partition (A, B) of V into independent sets is called a bipartition of G. The graph G is then often denoted by $G = (A \uplus B, E)$.
- **Boolean formula:** A Boolean formula is constructed from Boolean variables that can take the values true and false (or 1 and 0) by the following operations: conjunction (AND, \wedge), disjunction (OR, \vee), and negation (NOT, \neg).
- **clique:** A subset of vertices $S \subseteq V$ of a graph G = (V, E) is a clique in G if G[S] is a complete graph.
- **closed neighborhood:** The closed neighborhood of a vertex v in a graph G is $N_G[v] := \{v\} \cup N_G(v)$. The subscript may be omitted if G is clear from the context.
- closed set neighborhood: The closed neighborhood of a subset of vertices $S \subseteq V$ in a graph G = (V, E) is $N_G[S] := \bigcup_{v \in S} N_G[v]$. The subscript may be omitted if G is clear from the context.
- **coloring:** A coloring of a graph G = (V, E) is a function from V to a set of colors (integers) such that every two adjacent vertices in G are mapped to different colors. A k-coloring is a coloring using exactly k colors.
- **complete:** A graph G is complete if there is an edge between each pair of vertices in G. A complete graph on n vertices is denoted by K_n .
- Conjunctive Normal Form: A Boolean formula is in Conjunctive Normal Form if it is a conjunction of clauses, each clause is a disjunctions of literals, and each literal is a Boolean variable or its negation..
- **connected:** A graph G is connected if there is a walk between every two vertices of G.
- connected component: Maximal connected subgraph.
- cycle: 2-regular connected graph. A cycle on n vertices is denoted C_n .
- **degree:** The degree of a vertex v in a graph G is $d_G(v) := |N_G(v)|$. The subscript may be omitted if G is clear from the context. The degree of a vertex v in a **multigraph:** G is the number of times v appears as an end point of an edge in E.
- directed acyclic graph: A directed acyclic graph (DAG) is a directed graph that contains no directed cycle as a directed subgraph.

- **directed cycle:** Orientation of a cycle where each vertex has in-degree 1.
- **directed graph:** A directed graph G is an ordered pair (V, A) of a set V of vertices and a set A of arcs, where A is a set of ordered pairs of vertices. Its vertex set is V(G) = V and its arc set is A(G) = A.
- **directed path:** Orientation of a path where each vertex has in-degree 1, except the start vertex, which has in-degree 0 and out-degree 1.
- **disjoint union:** For two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with $V_1 \cap V_2 = \emptyset$, the disjoint union of G_1 and G_2 , denoted $G_1 \oplus G_2$ is the graph $(V_1 \cup V_2, E_1 \cup E_2)$; in case $V_1 \cap V_2 \neq \emptyset$, vertices need to be renamed before we can take the disjoint union of these graphs.
- **distance:** In a graph G, the distance between two vertices $u \in V$ and $v \in V$ is the length of the shortest walk minus one between u and v, that is the minimum number of edges needed to be traversed to reach v from u and it is denoted by $dist_G(u, v)$.
- dominating set: A subset of vertices $S \subseteq V$ of a graph G = (V, E) is a dominating set of G if $N_G[S] = V$.
- **feedback vertex set:** A feedback vertex set of a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that G S is acyclic.
- forest: Acyclic graph.
- **graph:** A (simple, undirected) graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges, where E is a set of unordered pairs of distinct vertices. Its vertex set is V(G) = V and its edge set is E(G) = E.
- **in-degree:** The in-degree of a vertex v in a directed graph D is $d_D^-(v) := |\{uv \in A\}|$. The subscript may be omitted if D is clear from the context.
- **independent set:** A subset of vertices $S \subseteq V$ of a graph G = (V, E) is an independent set of G if G[S] has no edges.
- induced subgraph: For a graph G = (V, E) and a vertex set $S \subseteq V$, the subgraph of G induced on S is the graph $G[S] := (S, \{uv \in E : u, v \in S\})$.
- **maximal (set):** For a set S of subsets of a ground set U, a set $X \in S$ is maximal if there exists no set $Y \in S$ with $X \subseteq Y$.
- **maximum (set):** For a set S of subsets of a ground set U, a set $X \in S$ is maximum if there exists no set $Y \in S$ with |Y| > |X|.
- **maximum degree:** The maximum degree of a graph G = (V, E) is $\Delta(G) := \max_{v \in V} d_G(v)$.
- **minimum degree:** The minimum degree of a graph G = (V, E) is $\delta(G) := \min_{v \in V} d_G(v)$.
- **multigraph:** A multigraph G is an ordered pair (V, E) of a set V of vertices and a multiset E of edges, where E is a multiset of unordered pairs of vertices. Its vertex set is V(G) = V and its edge set is E(G) = E.
- **open neighborhood:** The (open) neighborhood of a vertex v in a graph G = (V, E) is $N_G(v) := \{u \in V : uv \in E\}$. The subscript may be omitted if G is clear from the context.
- **open set neighborhood:** The (open) neighborhood of a subset of vertices $S \subseteq V$ in a graph G = (V, E) is $N_G(S) := N_G[S] \setminus S$. The subscript may be omitted if G is clear from the context.

order of growth: Let $g: \mathbb{R}_+ \to \mathbb{R}_+$ be a function. The set O(g(n)) contains every function f such that there exist $c, n_0 \geq 0$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_0$. The set o(g(n)) contains every function f such that for every $\epsilon > 0$ there exists a $n_0 \geq 0$ such that $f(n) \leq \epsilon \cdot g(n)$ for every $n \geq n_0$. For the set $\Omega(g(n))$, we have that $f(n) \in \Omega(g(n))$ iff $g(n) \in O(f(n))$. For the set $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$.

orientation: An orientation of a graph G is a directed graph D that has exactly one arc for each edge of G with the same endpoints.

out-degree: The out-degree of a vertex v in a directed graph D is $d_D^+(v) := |\{vu \in A\}|$. The subscript may be omitted if D is clear from the context.

path: Tree with maximum degree at most 2. A path on n vertices is denoted P_n .

regular: A graph is d-regular if each of its vertices has degree d. A graph is regular if it is d-regular for some d.

subgraph: A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

tree: Acyclic, connected graph.

vertex cover: A subset of vertices $S \subseteq V$ of a graph G = (V, E) is a vertex cover of G if each edge of G is incident to at least one vertex of S.

vertex removal: For a graph G = (V, E) and a vertex set $S \subseteq V$, the graph obtained by removing S from G is $G - S := G[V \setminus S]$. If $S = \{u\}$, we may write G - u instead of $G - \{u\}$.

walk: Sequence of vertices in a graph, with each vertex being adjacent to the vertices immediately preceding and succeeding it in the sequence.

Problem Definitions

k-Coloring

Given a graph G, determine if there is a coloring of G with at most k colors.

k-Sat

Given a Boolean formula in Conjunctive Normal Form where each clause has at most k literals, determine if there is an assignment of its variables such that the formula evaluates to true.

Dominating Set

Given a graph G and an integer k, determine whether G has a dominating set of size k.

FEEDBACK VERTEX SET

Given a (multi)graph G and an integer k, determine whether G has a feedback vertex set of size at most k.

Independent Set

Given a graph G and an integer k, determine whether G has an independent set of size k.

MAXIMUM INDEPENDENT SET

Given a graph G, find an independent set of G of maximum cardinality.

MINIMUM VERTEX COVER

Given a graph G, find a vertex cover of G of minimum cardinality.

Sat

Given a Boolean formula, determine if there is an assignment of its variables such that the formula evaluates to true.

TRAVELING SALESMAN PROBLEM

Given a set $\{1, ..., n\}$ of n cities, the distance d(i, j) between every two cities i and j, and an integer k, determine whether there is a tour with total distance at most k. A *tour* is a permutation of the cities starting and ending in city 1.

Vertex Cover

Given a graph G and an integer k, determine whether G has a vertex cover of size k.